Displaying all 3 publications

Abstract:
Sort:
  1. Bhardwaj A, Swe KM, Sinha NK, Osunkwo I
    Cochrane Database Syst Rev, 2016;3:CD010429.
    PMID: 26964506 DOI: 10.1002/14651858.CD010429.pub2
    BACKGROUND: Osteoporosis is a systemic skeletal disease characterized by low bone mass and micro-architectural deterioration of bone tissue with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis represents an important cause of morbidity in people with beta-thalassaemia and its pathogenesis is multifactorial. Factors include bone marrow expansion due to ineffective erythropoiesis, resulting in reduced trabecular bone tissue with cortical thinning; endocrine dysfunction secondary to excessive iron loading, leading to increased bone turnover; and lastly, a predisposition to physical inactivity due to disease complications with a subsequent reduction in optimal bone mineralization.A number of therapeutic strategies have been applied to treat osteoporosis in people with beta-thalassaemia, which include bisphosphonates, with or without, hormone replacement therapy. There are various forms of bisphosphonates, such as clodronate, pamidronate, alendronate and zoledronic acid. Other treatments include calcitonin, calcium, zinc supplementation, hydroxyurea and hormone replacement therapy for preventing hypogonadism.
    OBJECTIVES: To review the evidence on the efficacy and safety of treatment for osteoporosis in people with beta-thalassaemia.
    SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Date of most recent search: 04 February 2016.
    SELECTION CRITERIA: Randomised, placebo-controlled trials in people with thalassaemia with a bone mineral density z score of less than -2 standard deviations for: children less than 15 years old; adult males (15 to 50 years old); and all pre-menopausal females above 15 years and a bone mineral density t score of less than -2.5 standard deviations for post-menopausal females and males above 50 years old.
    DATA COLLECTION AND ANALYSIS: Two review authors assessed the eligibility and risk of bias of the included trials, extracted and analysed data and completed the review. We summarised results using risk ratios or rate ratios for dichotomous data and mean differences for continuous data. We combined trial results where appropriate.
    MAIN RESULTS: Four trials (with 211 participants) were included; three trials investigated the effect of bisphosphonate therapies and one trial investigated the effect of zinc supplementation. Only one trial was judged to be of good quality (low risk of bias); the remaining trials had a high or unclear risk of bias in at least one key domain.One trial (data not available for analysis) assessing the effect of neridronate (118 participants) reported significant increases in favour of the bisphosphonate group for bone mineral density at the lumbar spine and hip at both six and 12 months. For the femoral neck, a significant difference was noted at 12 months only. A further trial (25 participants) assessed the effect of alendronate and clodronate and found that after two years, bone mineral density increased significantly in the alendronate and clodronate groups as compared to placebo at the lumbar spine, mean difference 0.14 g/cm(2) (95% confidence interval 0.05 to 0.22) and at the femoral neck, mean difference 0.40 g/cm(2) (95% confidence interval 0.22 to 0.57). One 12-month trial (26 participants) assessed the effects of different doses of pamidronate (30 mg versus 60 mg) and found a significant difference in bone mineral density in favour of the 60 mg dose at the lumbar spine and forearm, mean difference 0.43 g/cm(2) (95% CI 0.10 to 0.76), mean difference 0.87 g/cm(2) (95% CI 0.23 to 1.51), respectively, but not at the femoral neck.In a zinc sulphate supplementation trial (42 participants), bone mineral density increased significantly compared to placebo at the lumbar spine after 12 months (37 participants), mean difference 0.15 g/cm(2) (95% confidence interval 0.10 to 0.20) and after 18 months (32 participants), mean difference 0.34 g/cm(2) (95% confidence interval 0.28 to 0.40). The same was true for bone mineral density at the hip after 12 months, mean difference 0.15 g/cm(2) (95% confidence interval 0.11 to 0.19) and after 18 months, mean difference 0.26 g/cm(2) (95% confidence interval 0.21 to 0.31).Fractures were not observed in one trial and not reported in three trials. There were no major adverse effects reported in two of the bisphosphonate trials; in the neridronate trial there was a reduction noted in the use of analgesic drugs and in the reported back pain score in favour of bisphosphonate treatment. Adverse effects were not reported in the trial of different doses of pamidronate or the zinc supplementation trial.
    AUTHORS' CONCLUSIONS: There is evidence to indicate an increase in bone mineral density at the femoral neck, lumbar spine and forearm after administration of bisphosphonates and at the lumbar spine and hip after zinc sulphate supplementation. The authors recommend that further long-term randomised control trials on different bisphosphonates and zinc supplementation therapies in people with beta-thalassaemia and osteoporosis are undertaken.
  2. Soe HHK, Abas AB, Than NN, Ni H, Singh J, Said ARBM, et al.
    Cochrane Database Syst Rev, 2020 05 28;5:CD010858.
    PMID: 32462740 DOI: 10.1002/14651858.CD010858.pub3
    BACKGROUND: Sickle cell disease (SCD) is a genetic chronic haemolytic and pro-inflammatory disorder. With increased catabolism and deficits in energy and nutrient intake, individuals with SCD suffer multiple macro- and micro-nutritional deficiencies, including vitamin D deficiency. This is an update of a previous review.

    OBJECTIVES: To investigate the effects of vitamin D supplementation in children and adults with SCD and to compare different dose regimens. To determine the effects of vitamin D supplementation on general health (e.g. growth status and health-related quality of life), on musculoskeletal health (including bone mineral density, pain crises, bone fracture and muscle health), on respiratory health (including lung function, acute chest syndrome, acute exacerbation of asthma and respiratory infections) and the safety of vitamin D supplementation.

    SEARCH METHODS: We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. Date of last search: 19 March 2020. We also searched database such as PubMed, clinical trial registries and the reference lists of relevant articles and reviews. Date of last search: 14 January 2020.

    SELECTION CRITERIA: Randomised controlled trials (RCTs) and quasi-RCTs comparing oral administration of any form of vitamin D supplementation at any dose and for any duration to another type or dose of vitamin D or placebo or no supplementation in people with SCD, of all ages, gender, and phenotypes.

    DATA COLLECTION AND ANALYSIS: Two authors independently extracted the data and assessed the risk of bias of the included studies. They used the GRADE guidelines to assess the quality of the evidence.

    MAIN RESULTS: Vitamin D versus placebo One double-blind RCT (n = 39) compared oral vitamin D3 (cholecalciferol) supplementation (20 participants) to placebo (19 participants) for six weeks. Only 25 participants completed the full six months of follow-up. The study had a high risk of bias due to incomplete outcome data, but a low risk of bias for randomisation, allocation concealment, blinding (of participants, personnel and outcome assessors) and selective outcome reporting; and an unclear risk of other biases. Vitamin D supplementation probably led to higher serum 25(OH)D levels at eight weeks, mean difference (MD) 29.79 (95% confidence interval (CI) 26.63 to 32.95); at 16 weeks, MD 12.67 (95% CI 10.43 to 14.90); and at 24 weeks, MD 15.52 (95% CI 13.50 to 17.54) (moderate-quality evidence). There was little or no difference in adverse events (tingling of lips or hands) between the vitamin D and placebo groups, risk ratio 3.16 (95% CI 0.14 to 72.84) (low-quality evidence). Vitamin D supplementation probably caused fewer pain days compared to the placebo group at eight weeks, MD -10.00 (95% CI -16.47 to -3.53) (low-quality evidence), but probably led to a lower (worse) health-related quality of life score (change from baseline in physical functioning PedsQL scores); at both 16 weeks, MD -12.56 (95% CI -16.44 to -8.69) and 24 weeks, MD -12.59 (95% CI -17.43 to -7.76), although this may not be the case at eight weeks (low-quality evidence). Vitamin D supplementation regimens compared Two double-blind RCTs (83 participants) compared different regimens of vitamin D. One RCT (n = 62) compared oral vitamin D3 7000 IU/day to 4000 IU/day for 12 weeks, while the second RCT (n = 21) compared oral vitamin D3 100,000 IU/month to 12,000 IU/month for 24 months. Both RCTs had low risk of bias for blinding (of participants, personnel and outcome assessors) and incomplete outcome data, but the risk of selective outcome reporting bias was high. The bias from randomisation and allocation concealment was low in one study but not in the second. There was an unclear risk of other biases. When comparing oral vitamin D 100,000 IU/month to 12,000 IU/month, the higher dose may have resulted in higher serum 25(OH)D levels at one year, MD 16.40 (95% CI 12.59 to 20.21) and at two years, MD 18.96 (95% CI 15.20 to 22.72) (low-quality evidence). There was little or no difference in adverse events between doses (low-quality evidence). There were more episodes of acute chest syndrome in the high-dose group, at one year, MD 0.27 (95% CI 0.02 to 0.52) but there was little or no difference at two years, MD 0.09 (95% CI -0.04 to 0.22) (moderate-quality evidence). At one year and two years there was also little or no difference between the doses in the presence of pain (moderate-quality evidence) or forced expiratory volume in one second % predicted. However, the high-dose group had lower values for % predicted forced vital capacity at both one and two years, MD -7.20% predicted (95% CI -14.15 to -0.25) and MD -7.10% predicted (95% CI -14.03 to -0.17), respectively. There were little or no differences between dose regimens in the muscle health of either hand or the dominant hand. The study comparing oral vitamin D3 7000 IU/day to 4000 IU/day (21 participants) did not provide data for analysis, but median serum 25(OH)D levels were reported to be lower in the low-dose group at both six and 12 weeks. At 12 weeks the median serum parathyroid hormone level was lower in the high-dose group.

    AUTHORS' CONCLUSIONS: We included three RCTs of varying quality. We consider that the current evidence presented in this review is not of sufficient quality to guide clinical practice. Until further evidence becomes available, clinicians should consider the relevant existing guidelines for vitamin D supplementation and dietary reference intakes for calcium and vitamin D. Well-designed RCTs of parallel design, are required to determine the effects and the safety of vitamin D supplementation as well as to assess the relative benefits of different doses in children and adults with SCD.

  3. Soe HH, Abas AB, Than NN, Ni H, Singh J, Said AR, et al.
    Cochrane Database Syst Rev, 2017 01 20;1:CD010858.
    PMID: 28105733 DOI: 10.1002/14651858.CD010858.pub2
    BACKGROUND: Sickle cell disease is a genetic chronic haemolytic and pro-inflammatory disorder. The clinical manifestations of sickle cell disease result from the presence of mutations on the beta globin genes that generate an abnormal haemoglobin product (called haemoglobin S) within the red blood cell. Sickle cell disease can lead to many complications such as acute chest syndrome, stroke, acute and chronic bone complications (including painful vaso-occlusive crisis, osteomyelitis, osteonecrosis and osteoporosis). With increased catabolism and deficits in energy and nutrient intake, individuals with sickle cell disease suffer multiple macro- and micro-nutritional deficiencies, including vitamin D deficiency. Since vitamin D maintains calcium homeostasis and is essential for bone mineralisation, its deficiency may worsen musculoskeletal health problems encountered in sickle cell disease. Therefore, there is a need to review the effects and the safety of vitamin D supplementation in sickle cell disease.

    OBJECTIVES: To investigate the hypothesis that vitamin D supplementation increases serum 25-hydroxyvitamin D level in children and adults with sickle cell disease.To determine the effects of vitamin D supplementation on general health such as growth status and health-related quality of life; on musculoskeletal health including bone mineral density, pain crises, bone fracture and muscle health; on respiratory health which includes lung function tests, acute chest syndrome, acute exacerbation of asthma and respiratory infections; and the safety of vitamin D supplementation in children and adults with sickle cell disease.

    SEARCH METHODS: We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched database such as PubMed, clinical trial registries and the reference lists of relevant articles and reviews.Date of last search: 15 December 2016.

    SELECTION CRITERIA: Randomised controlled studies and quasi-randomised controlled studies (controlled clinical studies) comparing oral administration of any form of vitamin D supplementation to another type of vitamin D or placebo or no supplementation at any dose and for any duration, in people with sickle cell disease, of all ages, gender, and phenotypes including sickle cell anaemia, haemoglobin sickle cell disease and sickle beta-thalassaemia diseases.

    DATA COLLECTION AND ANALYSIS: Two authors independently extracted the data and assessed the risk of bias of the included study. They used the GRADE guidelines to assess the quality of the evidence.

    MAIN RESULTS: One double-blind randomised controlled study including 46 people with sickle cell disease (HbSS, HbSC, HbSβ+thal and HbSβ0thal) was eligible for inclusion in this review. Of the 46 enrolled participants, seven withdrew before randomisation leaving 39 participants who were randomised. Only 25 participants completed the full six months of follow up. Participants were randomised to receive oral vitamin D3 (cholecalciferol) (n = 20) or placebo (n = 19) for six weeks and were followed up to six months. Two participants from the treatment group have missing values of baseline serum 25-hydroxyvitamin D, therefore the number of samples analysed was 37 (vitamin D n = 18, placebo n = 19).The included study had a high risk of bias with regards to incomplete outcome data (high dropout rate in the placebo group), but a low risk of bias for other domains such as random sequence generation, allocation concealment, blinding of participants, personnel and outcome assessors, selective outcome reporting; and an unclear risk of other biases.Compared to the placebo group, the vitamin D group had significantly higher serum 25-hydroxyvitamin D (25(OH)D) levels at eight weeks, mean difference 29.79 (95% confidence interval 26.63 to 32.95); at 16 weeks, mean difference 12.67 (95% confidence interval 10.43 to 14.90); and at 24 weeks, mean difference 15.52 (95% confidence interval 13.50 to 17.54). We determined the quality of the evidence for this outcome to be moderate. There was no significant difference of adverse events (tingling of lips or hands) between the vitamin D and placebo groups, risk ratio 3.16 (95% confidence interval 0.14 to 72.84), but the quality of the evidence was low. Regarding the frequency of pain, the vitamin D group had significantly fewer pain days compared to the placebo group, mean difference -10.00 (95% confidence interval -16.47 to -3.53), but again the quality of the evidence was low. Furthermore, the review included physical functioning PedsQL scores which was reported as absolute change from baseline. The vitamin D group had a lower (worse) health-related quality of life score than the placebo group but this was not significant at eight weeks, mean difference -2.02 (95% confidence interval -6.34 to 2.30). However, the difference was significant at both 16 weeks, mean difference -12.56 (95% confidence interval -16.44 to -8.69) and 24 weeks, mean difference -12.59 (95% confidence interval -17.43 to -7.76). We determined the quality of evidence for this outcome to be low.

    AUTHORS' CONCLUSIONS: We included only one low-quality clinical study which had a high risk of bias with regards to incomplete outcome data. Therefore, we consider that the evidence is not of sufficient quality to guide clinical practice. Until further evidence becomes available, clinicians should consider the relevant existing guidelines for vitamin D supplementation (e.g. the Endocrine Society Clinical Practice Guidelines) and dietary reference intakes for calcium and vitamin D (e.g. from the USA Institute of Medicine). Evidence of vitamin D supplementation in sickle cell disease from high quality studies is needed. Well-designed, randomised, placebo-controlled studies of parallel design, are required to determine the effects and the safety of vitamin D supplementation in children and adults with sickle cell disease.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links