Displaying all 4 publications

Abstract:
Sort:
  1. Fowler D, Nemitz E, Misztal P, Di Marco C, Skiba U, Ryder J, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3196-209.
    PMID: 22006962 DOI: 10.1098/rstb.2011.0055
    This paper reports measurements of land-atmosphere fluxes of sensible and latent heat, momentum, CO(2), volatile organic compounds (VOCs), NO, NO(2), N(2)O and O(3) over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO(2) flux to the two canopies differs by approximately a factor of 2, 1200 mg C m(-2) h(-1) for the oil palm and 700 mg C m(-2) h(-1) for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O(3) to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces.
  2. Hewitt CN, MacKenzie AR, Di Carlo P, Di Marco CF, Dorsey JR, Evans M, et al.
    Proc Natl Acad Sci U S A, 2009 Nov 3;106(44):18447-51.
    PMID: 19841269 DOI: 10.1073/pnas.0907541106
    More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an "environmentally friendly" fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O(3)), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O(3) concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O(3) concentrations will reach 100 parts per billion (10(9)) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.
  3. Passaro A, Wang J, Wang Y, Lee SH, Melosky B, Shih JY, et al.
    Ann Oncol, 2024 Jan;35(1):77-90.
    PMID: 37879444 DOI: 10.1016/j.annonc.2023.10.117
    BACKGROUND: Amivantamab plus carboplatin-pemetrexed (chemotherapy) with and without lazertinib demonstrated antitumor activity in patients with refractory epidermal growth factor receptor (EGFR)-mutated advanced non-small-cell lung cancer (NSCLC) in phase I studies. These combinations were evaluated in a global phase III trial.

    PATIENTS AND METHODS: A total of 657 patients with EGFR-mutated (exon 19 deletions or L858R) locally advanced or metastatic NSCLC after disease progression on osimertinib were randomized 2 : 2 : 1 to receive amivantamab-lazertinib-chemotherapy, chemotherapy, or amivantamab-chemotherapy. The dual primary endpoints were progression-free survival (PFS) of amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy. During the study, hematologic toxicities observed in the amivantamab-lazertinib-chemotherapy arm necessitated a regimen change to start lazertinib after carboplatin completion.

    RESULTS: All baseline characteristics were well balanced across the three arms, including by history of brain metastases and prior brain radiation. PFS was significantly longer for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy [hazard ratio (HR) for disease progression or death 0.48 and 0.44, respectively; P < 0.001 for both; median of 6.3 and 8.3 versus 4.2 months, respectively]. Consistent PFS results were seen by investigator assessment (HR for disease progression or death 0.41 and 0.38 for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy, respectively; P < 0.001 for both; median of 8.2 and 8.3 versus 4.2 months, respectively). Objective response rate was significantly higher for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy (64% and 63% versus 36%, respectively; P < 0.001 for both). Median intracranial PFS was 12.5 and 12.8 versus 8.3 months for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy (HR for intracranial disease progression or death 0.55 and 0.58, respectively). Predominant adverse events (AEs) in the amivantamab-containing regimens were hematologic, EGFR-, and MET-related toxicities. Amivantamab-chemotherapy had lower rates of hematologic AEs than amivantamab-lazertinib-chemotherapy.

    CONCLUSIONS: Amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy improved PFS and intracranial PFS versus chemotherapy in a population with limited options after disease progression on osimertinib. Longer follow-up is needed for the modified amivantamab-lazertinib-chemotherapy regimen.

  4. Felip E, Cho BC, Gutiérrez V, Alip A, Besse B, Lu S, et al.
    Ann Oncol, 2024 Sep;35(9):805-816.
    PMID: 38942080 DOI: 10.1016/j.annonc.2024.05.541
    BACKGROUND: Amivantamab-lazertinib significantly prolonged progression-free survival (PFS) versus osimertinib in patients with epidermal growth factor receptor (EGFR)-mutant advanced non-small-cell lung cancer [NSCLC; hazard ratio (HR) 0.70; P < 0.001], including those with a history of brain metastases (HR 0.69). Patients with TP53 co-mutations, detectable circulating tumor DNA (ctDNA), baseline liver metastases, and those without ctDNA clearance on treatment have poor prognoses. We evaluated outcomes in these high-risk subgroups.

    PATIENTS AND METHODS: This analysis included patients with treatment-naive, EGFR-mutant advanced NSCLC randomized to amivantamab-lazertinib (n = 429) or osimertinib (n = 429) in MARIPOSA. Pathogenic alterations were identified by next-generation sequencing (NGS) of baseline blood ctDNA with Guardant360 CDx. Ex19del and L858R ctDNA in blood was analyzed at baseline and cycle 3 day 1 (C3D1) with Biodesix droplet digital polymerase chain reaction (ddPCR).

    RESULTS: Baseline ctDNA for NGS of pathogenic alterations was available for 636 patients (amivantamab-lazertinib, n = 320; osimertinib, n = 316). Amivantamab-lazertinib improved median PFS (mPFS) versus osimertinib for patients with TP53 co-mutations {18.2 versus 12.9 months; HR 0.65 [95% confidence interval (CI) 0.48-0.87]; P = 0.003} and for patients with wild-type TP53 [22.1 versus 19.9 months; HR 0.75 (95% CI 0.52-1.07)]. In patients with EGFR-mutant, ddPCR-detectable baseline ctDNA, amivantamab-lazertinib significantly prolonged mPFS versus osimertinib [20.3 versus 14.8 months; HR 0.68 (95% CI 0.53-0.86); P = 0.002]. Amivantamab-lazertinib significantly improved mPFS versus osimertinib in patients without ctDNA clearance at C3D1 [16.5 versus 9.1 months; HR 0.49 (95% CI 0.27-0.87); P = 0.015] and with clearance [24.0 versus 16.5 months; HR 0.64 (95% CI 0.48-0.87); P = 0.004]. Amivantamab-lazertinib significantly prolonged mPFS versus osimertinib among randomized patients with [18.2 versus 11.0 months; HR 0.58 (95% CI 0.37-0.91); P = 0.017] and without baseline liver metastases [24.0 versus 18.3 months; HR 0.74 (95% CI 0.60-0.91); P = 0.004].

    CONCLUSIONS: Amivantamab-lazertinib effectively overcomes the effect of high-risk features and represents a promising new standard of care for patients with EGFR-mutant advanced NSCLC.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links