Displaying all 2 publications

Abstract:
Sort:
  1. Thapa R, Ahmad Bhat A, Shahwan M, Ali H, PadmaPriya G, Bansal P, et al.
    Brain Res, 2024 Dec 15;1845:149202.
    PMID: 39216694 DOI: 10.1016/j.brainres.2024.149202
    Alzheimer's Disease (AD) is a progressive neurological disease associated with behavioral abnormalities, memory loss, and cognitive impairment that cause major causes of dementia in the elderly. The pathogenetic processes cause complex effects on brain function and AD progression. The proper protein homeostasis, or proteostasis, is critical for cell health. AD causes the buildup of misfolded proteins, particularly tau and amyloid-beta, to break down proteostasis, such aggregates are toxic to neurons and play a critical role in AD pathogenesis. The rise of cellular senescence is accompanied by aging, marked by irreversible cell cycle arrest and the release of pro-inflammatory proteins. Senescent cell build-up in the brains of AD patients exacerbates neuroinflammation and neuronal degeneration. These cells senescence-associated secretory phenotype (SASP) also disturbs the brain environment. When proteostasis failure and cellular senescence coalesce, a cycle is generated that compounds each other. While senescent cells contribute to proteostasis breakdown through inflammatory and degradative processes, misfolded proteins induce cellular stress and senescence. The principal aspects of the neurodegenerative processes in AD are the interaction of cellular senescence and proteostasis failure. This review explores the interconnected roles of proteostasis disruption and cellular senescence in the pathways leading to neurodegeneration in AD.
  2. Yappalparvi A, Balaraman AK, Padmapriya G, Gaidhane S, Kaur I, Lal M, et al.
    Respir Med, 2025 Jan;236:107863.
    PMID: 39557208 DOI: 10.1016/j.rmed.2024.107863
    BACKGROUND: Chronic obstructive pulmonary disease (COPD) significantly impacts global health due to persistent airflow limitation and inflammation. Despite standard therapies, symptoms persist. Ensifentrine, targeting both bronchoconstriction and inflammation as a dual phosphodiesterase 3 and 4 inhibitor, offers a promising therapeutic advancement for COPD management. This meta-analysis evaluates the safety and efficacy of ensifentrine in improving lung function, dyspnea, and quality of life in COPD patients.

    METHODS: We searched PubMed, Embase, and Web of Science through August 2024 for randomized controlled trials evaluating ensifentrine in COPD patients over a minimum of four weeks. Data extraction and screening utilized Knowledge software, and meta-analyses were performed using R v4.4 with a random-effects model.

    RESULTS: From 206 studies identified, four met our inclusion criteria. Ensifentrine improved FEV1 significantly at a dose of 3 mg (LS mean difference: 40.90 mL; 95 % CI: 19.65-62.15). It also improved dyspnea as measured by the Transition Dyspnea Index (TDI) (LS mean difference: 0.91; 95 % CI: 0.61-1.21) and quality of life according to the St. George's Respiratory Questionnaire-C (SGRQ-C) scores (LS mean difference: -1.92; 95 % CI: -3.28 to -0.55). Safety profiles were comparable between the ensifentrine and placebo groups, with no significant increase in treatment-emergent adverse events (TEAEs) (RR: 1.02; 95 % CI: 0.94-1.10).

    CONCLUSION: Ensifentrine significantly enhances lung function, reduces dyspnea, and improves quality of life in COPD patients, especially at a 3 mg dose. These benefits, coupled with a stable safety profile, support its use as an adjunctive therapy in COPD management.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links