OBJECTIVE: This paper analyzed the correlation between the brain and skin activities in rest and stimulations by information-based analysis of electroencephalogram (EEG) and galvanic skin resistance (GSR) signals.
METHODS: We recorded EEG and GSR signals of eleven subjects during rest and auditory stimulations using three pieces of music that were differentiated based on their complexity. Then, we calculated the Shannon entropy of these signals to quantify their information contents.
RESULTS: The results showed that music with greater complexity has a more significant effect on altering the information contents of EEG and GSR signals. We also found a strong correlation (r= 0.9682) among the variations of the information contents of EEG and GSR signals. Therefore, the activities of the skin and brain are correlated in different conditions.
CONCLUSION: This analysis technique can be utilized to evaluate the correlation among the activities of various organs versus brain activity in different conditions.
OBJECTIVE: In this research, for the first time the coupling between heart and brain activities was analyzed by information-based analysis.
METHODS: Considering Shannon entropy as the indicator of the information of a system, we recorded electroencephalogram (EEG) and electrocardiogram (ECG) signals of 13 participants (7 M, 6 F, 18-22 years old) in different external stimulations (using pineapple, banana, vanilla, and lemon flavors as olfactory stimuli) and evaluated how the information of EEG signals and R-R time series (as heart rate variability (HRV)) are linked.
RESULTS: The results indicate that the changes in the information of the R-R time series and EEG signals are strongly correlated (ρ=-0.9566).
CONCLUSION: We conclude that heart and brain activities are related.
OBJECTIVE: In this research, for the first time, we investigate how facial muscle reaction is related to the reaction of the human brain.
METHODS: Since both electromyography (EMG) and electroencephalography (EEG) signals, as the features of muscle and brain activities, contain information, we benefited from the information theory and computed the Shannon entropy of EMG and EEG signals when subjects were exposed to different static visual stimuli with different Shannon entropies (information content).
RESULTS: Based on the obtained results, the variations of the information content of the EMG signal are related to the variations of the information content of the EEG signal and the visual stimuli. Statistical analysis also supported the results indicating that the visual stimuli with greater information content have a greater effect on the variation of the information content of both EEG and EMG signals.
CONCLUSION: This investigation can be further continued to analyze the relationship between facial muscle and brain reactions in case of other types of stimuli.