Displaying all 2 publications

Abstract:
Sort:
  1. Chan HH, Leong YQ, Voon SM, Pan ML, Leong CO, Lim CL, et al.
    Rep Biochem Mol Biol, 2021 Jan;9(4):417-425.
    PMID: 33969135 DOI: 10.52547/rbmb.9.4.417
    Background: Alzheimer's disease (AD) is a neurodegenerative disorder that causes cognitive dysfunction. Previous studies have suggested that amyloid plaques, mainly comprising of amyloid-beta peptides, play a pivotal role in AD pathophysiology. This study focuses on the evaluation of the effects of amyloid precursor protein (APP) overexpression on NF-κB, Rho-GTPase and Bcl-2 mediated pro-apoptotic pathways in neuronal cells.

    Methods: A lentiviral transduction system was used to generate SH-SY5Y cells overexpressing APP. Immunoblotting was conducted to determine expression levels of NF-κB, Rho-GTPase, and Bcl-2 family proteins in the APP overexpressed cells.

    Results: In the NF-κB signaling pathway, APP-overexpressing SH-SY5Y cells showed that there was a reduction of p-NF-κB (p< 0.05) and IKKα. Subsequently, there was upregulation of protein expression of NF-Κb, IKKβ and IκBα. On the other hand, protein expression of RhoC (p< 0.05) and Rac1/2/3 was upregulated as compared to the control group. Meanwhile, a decrease in RhoA, Cdc42 (p< 0.05) and p-Rac1/cdc42 protein levels was observed in the APP-overexpressed group. Lastly, in the pro-apoptotic pathway, the expression of Bcl-2, Bid, Bok and Puma (p< 0.05) was up regulated in the APP-overexpressed group. Downregulation of Bad and Bim expression was observed in the APP-overexpressed as compared to the control group, and Bax expression remained unchanged in the APP-overexpressed group.

    Conclusion: APP overexpression regulated signaling in the NF-κB, Rho-GTPase and Bcl-2 family pathways in neuronal cells, suggesting that these are involved in promoting neuronal survival and modulating synaptic plasticity in AD. However, further studies are essential to elucidate the APP-mediated mechanism of action.

  2. Pan ML, Ahmad Puzi NN, Ooi YY, Ramasamy R, Vidyadaran S
    Biomedicines, 2023 Sep 27;11(10).
    PMID: 37893022 DOI: 10.3390/biomedicines11102648
    (1) Background: The latest research illustrates that microglia phenotype is not the binary 'resting' and 'activated' profiles. Instead, there is wide diversity in microglia states. Similarly, when testing different stimulation protocols for BV2 microglia, we discovered differences in the response of the cells in terms of the production of intracellular ROS (iROS), nitric oxide (NO), CD40 expression, and migratory capacity. (2) Methods: BV2 microglia were treated with single interferon gamma (IFN-γ) stimulation, LPS/IFN-γ co-stimulation, and priming with IFN-γ followed by stimulation with LPS for 24 h. The responses of BV2 microglia were then assessed using the H2DCFDA test for iROS, the Griess assay for NO, immunophenotyping for CD40/CD11b/MHC II, and migration using a transwell apparatus. (3) Results: Single stimulation with IFN-γ induced NO but not ROS in BV2 microglia. Co-stimulation with LPS200IFN-γ2.5 induced a higher iROS production (a 9.2-fold increase) and CD40 expression (28031 ± 8810.2 MFI), compared to priming with primedIFN-γ50LPS100 (a 4.0-fold increase in ROS and 16764 ± 1210.8 MFI of CD40). Co-stimulation also induced cell migration. On the other hand, priming BV2 microglia (primedIFN-γ50LPS100) resulted in a higher NO production (64 ± 1.4 µM) compared to LPS200IFN-γ2.5 co-stimulation (44 ± 1.7 µM). Unexpectedly, priming inhibited BV2 migration. (4) Conclusions: Taken together, the findings from this project reveal the ability of co-stimulation and priming in stimulating microglia into an inflammatory phenotype, and the heterogeneity of microglia responses towards different stimulating approaches.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links