The yeast species composition of 12 cocoa bean fermentations carried out in Brazil, Ecuador, Ivory Coast and Malaysia was investigated culture-independently. Denaturing gradient gel electrophoresis of 26S rRNA gene fragments, obtained through polymerase chain reaction with universal eukaryotic primers, was carried out with two different commercial apparatus (the DCode and CBS systems). In general, this molecular method allowed a rapid monitoring of the yeast species prevailing during fermentation. Under similar and optimal denaturing gradient gel electrophoresis conditions, the CBS system allowed a better separated band pattern than the DCode system and an unambiguous detection of the prevailing species present in the fermentation samples. The most frequent yeast species were Hanseniaspora sp., followed by Pichia kudriavzevii and Saccharomyces cerevisiae, independent of the origin of the cocoa. This indicates a restricted yeast species composition of the cocoa bean fermentation process. Exceptionally, the Ivorian cocoa bean box fermentation samples showed a wider yeast species composition, with Hyphopichia burtonii and Meyerozyma caribbica among the main representatives. Yeasts were not detected in the samples when the temperature inside the fermenting cocoa pulp-bean mass reached values higher than 45 °C or under early acetic acid production conditions.
Six facultatively anaerobic, non-motile lactic acid bacteria were isolated from spontaneous cocoa bean fermentations carried out in Brazil, Ecuador and Malaysia. Phylogenetic analysis revealed that one of these strains, designated M75(T), isolated from a Brazilian cocoa bean fermentation, had the highest 16S rRNA gene sequence similarity towards Weissella fabaria LMG 24289(T) (97.7%), W. ghanensis LMG 24286(T) (93.3%) and W. beninensis LMG 25373(T) (93.4%). The remaining lactic acid bacteria isolates, represented by strain M622, showed the highest 16S rRNA gene sequence similarity towards the type strain of Fructobacillus tropaeoli (99.9%), a recently described species isolated from a flower in South Africa. pheS gene sequence analysis indicated that the former strain represented a novel species, whereas pheS, rpoA and atpA gene sequence analysis indicated that the remaining five strains belonged to F. tropaeoli; these results were confirmed by DNA-DNA hybridization experiments towards their respective nearest phylogenetic neighbours. Additionally, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry proved successful for the identification of species of the genera Weissella and Fructobacillus and for the recognition of the novel species. We propose to classify strain M75(T) ( = LMG 26217(T) = CCUG 61472(T)) as the type strain of the novel species Weissella fabalis sp. nov.