Displaying all 3 publications

Abstract:
Sort:
  1. Khoo CS, Lee D, Park KM, In Lee B, Kim SE
    BMC Neurol, 2019 Dec 30;19(1):348.
    PMID: 31888520 DOI: 10.1186/s12883-019-1575-0
    BACKGROUND: Chest pain as the primary manifestation of epilepsy is extremely rare and has only been reported once to date.

    CASE PRESENTATION: We herein describe a 47-year-old woman with recurrent chest pain for 3 years. The cause of her chest pain remained elusive despite extensive investigations including comprehensive cardiac work-up. She was referred to the neurology clinic for one episode of confusion. Video-electroencephalographic monitoring detected unequivocal ictal changes during her habitual chest pain events. She has remained chest pain (seizure) free with a single antiseizure drug.

    CONCLUSIONS: This case underlines the importance of epilepsy as a rare yet treatable cause of recurrent chest pain. Further studies are required to determine the pathophysiology of ictal chest pain.

  2. Lee DA, Park KM, Kim HC, Khoo CS, Lee BI, Kim SE
    J Clin Neurophysiol, 2023 May 01;40(4):364-370.
    PMID: 34510091 DOI: 10.1097/WNP.0000000000000894
    PURPOSE: The aims of this study were to identify (1) the spectrum of ictal-interictal continuum (IIC) using the two dimensions of 2HELPS2B score and background suppression and (2) the response to subsequent anti-seizure drugs depends on the spectrum of IIC.

    METHODS: The study prospectively enrolled 62 patients with IIC on EEG. The diagnosis of nonconvulsive status epilepticus was attempted with Salzburg criteria as well as clinical and neuroimaging data. IICs were dichotomized into patients with nonconvulsive status epilepticus and coma-IIC. The 2HELPS2B score was evaluated as the original proposal. The suppression ratio was analyzed with Persyst software.

    RESULTS: Forty-seven cases (75.8%) were nonconvulsive status epilepticus-IIC and 15 cases (24.2%) were coma-IIC. Multivariate analysis revealed that the 2HELPS2B score was the only significant variable dichotomizing the spectrum of IIC (odds ratio, 3.0; 95% confidence interval, 1.06-8.6; P = 0.03 for nonconvulsive status epilepticus-IIC). In addition, the suppression ratio was significantly negatively correlated with 2HELPS2B scores (Spearman coefficient = -0.37, P = 0.004 for left hemisphere and Spearman coefficient = -0.3, P = 0.02 for right hemisphere). Furthermore, patients with higher 2HELPS2B score (74% [14/19] in ≥2 points vs. 44% [14/32] in <2 points, P = 0.03 by χ 2 test) and lower suppression ratio (62% [23/37] in ≤2.18 vs. 35% [6/17] in >2.18, P = 0.06 by χ 2 test) seemed to be more responsive to subsequent anti-seizure drug.

    CONCLUSIONS: The 2HELPS2B score and background suppression can be used to distinguish the spectrum of IIC and thereby predict the response to subsequent anti-seizure drug.

  3. Khoo CS, Kim SE, Lee BI, Shin KJ, Ha SY, Park J, et al.
    Eur Neurol, 2020;83(1):56-64.
    PMID: 32320976 DOI: 10.1159/000506591
    INTRODUCTION: Seizures as acute stroke mimics are a diagnostic challenge.

    OBJECTIVE: The aim of the study was to characterize the perfusion patterns on perfusion computed tomography (PCT) in patients with seizures masquerading as acute stroke.

    METHODS: We conducted a study on patients with acute seizures as stroke mimics. The inclusion criteria for this study were patients (1) initially presenting with stroke-like symptoms but finally diagnosed to have seizures and (2) with PCT performed within 72 h of seizures. The PCT of seizure patients (n = 27) was compared with that of revascularized stroke patients (n = 20) as the control group.

    RESULTS: Among the 27 patients with seizures as stroke mimics, 70.4% (n = 19) showed characteristic PCT findings compared with the revascularized stroke patients, which were as follows: (1) multi-territorial cortical hyperperfusion {(73.7% [14/19] vs. 0% [0/20], p = 0.002), sensitivity of 73.7%, negative predictive value (NPV) of 80%}, (2) involvement of the ipsilateral thalamus {(57.9% [11/19] vs. 0% [0/20], p = 0.007), sensitivity of 57.9%, NPV of 71.4%}, and (3) reduced perfusion time {(84.2% [16/19] vs. 0% [0/20], p = 0.001), sensitivity of 84.2%, NPV of 87%}. These 3 findings had 100% specificity and positive predictive value in predicting patients with acute seizures in comparison with reperfused stroke patients. Older age was strongly associated with abnormal perfusion changes (p = 0.038), with a mean age of 66.8 ± 14.5 years versus 49.2 ± 27.4 years (in seizure patients with normal perfusion scan).

    CONCLUSIONS: PCT is a reliable tool to differentiate acute seizures from acute stroke in the emergency setting.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links