In plant development, flowering is the most widely studied process. Floral forms show large diversity in different species due to simple variations in basic architecture. To determine the floral gene expression during the past decade, MADS-box genes have identified as key regulators in both reproductive and vegetative plant development. Traditional genetics and functional genomics tools are now available to elucidate the expression and function of this complex gene family on a much larger scale. Moreover, comparative analysis of the MADS-box genes in diverse flowering and non-flowering plants, boosted by various molecular technologies such as ChIP and next-generation DNA sequencing, contributes to our understanding of how this important gene family has expanded during the evolution of land plants. Likewise, the big data analysis revealed combined activity of transcriptional regulators and floral organ identity factors regulate the flower developmental programs. Thus, with the help of cutting-edge technologies like RNA-Sequencing, sex determination is now better understood in few non-model plants Therefore, the recent advances in next-generation sequencing (NGS) should enable researchers to identify the full range of floral gene functions, which will significantly help to understand plant development and evolution. This review summarizes the floral homeotic genes in model and non-model species to understand the flower development genes and dioecy evolution.
An edible bird nest is a product of the solidified saliva secretion from a few different swiftlet's species, during the breeding season. But the high impurities in A. maximus and C. esculent nests make them less ideal to be consumed. Eggshells and guano are the major contaminants contributing to the nitrite and nitrates contents. However, recent studies have shown significant medicinal and cosmetic applications of edible bird nest like anti-viral, anti-inflammatory, enhancing bone strength, and anti-aging. Thus, the high demand for edible bird nest in the global market to explore its potential application has improved from swiftlet farming activities to the cleaning process. Recent studies have shown the use of immobilized enzymes like keratinase for the removal of contaminants. The current review discusses the importance of Swiftlet bird nest, its application, and commercialization.