Displaying all 2 publications

Abstract:
Sort:
  1. Paulraj P, Vnootheni N, Chandramohan M, Thevarkattil MJP
    Recent Pat Biotechnol, 2018;12(3):186-199.
    PMID: 29384069 DOI: 10.2174/1872208312666180131114125
    BACKGROUND: Polyhydroxyalkanoates are bio-based, biodegradable naturally occurring polymers produced by a wide range of organisms, from bacteria to higher mammals. The properties and biocompatibility of PHA make it possible for a wide spectrum of applications. In this context, we analyze the potential applications of PHA in biomedical science by exploring the global trend through the patent survey. The survey suggests that PHA is an attractive candidate in such a way that their applications are widely distributed in the medical industry, drug delivery system, dental material, tissue engineering, packaging material as well as other useful products.

    OBJECTIVE: In our present study, we explored patents associated with various biomedical applications of polyhydroxyalkanoates.

    METHOD: Patent databases of European Patent Office, United States Patent and Trademark Office and World Intellectual Property Organization were mined. We developed an intensive exploration approach to eliminate overlapping patents and sort out significant patents.We demarcated the keywords and search criterions and established search patterns for the database request. We retrieved documents within the recent 6 years, 2010 to 2016 and sort out the collected data stepwise to gather the most appropriate documents in patent families for further scrutiny.

    RESULTS: By this approach, we retrieved 23,368 patent documents from all the three databases and the patent titles were further analyzed for the relevance of polyhydroxyalkanoates in biomedical applications. This ensued in the documentation of approximately 226 significant patents associated with biomedical applications of polyhydroxyalkanoates and the information was classified into six major groups. Polyhydroxyalkanoates has been patented in such a way that their applications are widely distributed in the medical industry, drug delivery system, dental material, tissue engineering, packagingmaterial as well as other useful products.

    CONCLUSION: There are many avenues through which PHA & PHB could be used. Our analysis shows patent information can be used to identify various applications of PHA and its representatives in the biomedical field. Upcoming studies can focus on the application of PHA in the different field to discover the related topics and associate to this study.We believe that this approach of analysis and findings can initiate new researchers to undertake similar kind of studies in their represented field to fill the gap between the patent articles and research publications.

  2. Samrot AV, Angalene JLA, Roshini SM, Stefi SM, Preethi R, Raji P, et al.
    Int J Biol Macromol, 2019 Nov 01;140:393-400.
    PMID: 31425761 DOI: 10.1016/j.ijbiomac.2019.08.121
    In this study, gum of Araucaria heterophylla was collected. The collected gum was subjected for extraction of polysaccharide using solvent extraction system. Thus, extracted polysaccharide was further purified using solvent method and was characterized using UV-Vis spectroscopy, Phenol sulfuric acid assay, FTIR, TGA, TLC and GC-MS. The gum derived polysaccharide was found to have the following sugars Rhamnose, Allose, Glucosinolate, Threose, Idosan, Galactose and Arabinose. The extracted polysaccharide was tested for various in-vitro bioactive studies such as antibacterial activity, antioxidant activity and anticancer activity. The polysaccharide was found to have antioxidant and anticancer activity. Further, the polysaccharide was subjected for carboxymethylation to favor the nanocarrier synthesis, where it was chelated using Sodium Tri Meta Phosphate (STMP) to form nanocarriers. The nanocarriers so formed were loaded with curcumin and were characterized using FTIR, SEM, EDX and AFM. Both the loaded and unloaded nanocarriers were studied for its in-vitro cytotoxic effect against the MCF7 human breast cancer cell lines. The nanocarriers were found to deliver the drug efficiently against the cancer cell line used in this study.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links