Displaying all 2 publications

Abstract:
Sort:
  1. Peng PC, Wang Y, Liu LY, Zou YD, Liao XD, Liang JB, et al.
    Poult Sci, 2016 May;95(5):1033-41.
    PMID: 26944981 DOI: 10.3382/ps/pew013
    The excretion rates and ecological risk to the environment of three commonly used veterinary antibiotics (VAs), amoxicillin, ciprofloxacin, and doxycycline, in layer hen manure during the application and withdrawal periods were investigated in a study consisting of a control group fed with VA-free basal diet and nine treatment groups consisted of three levels (200 mg/kg, 100 mg/kg, and 50 mg/kg) of amoxicillin (AMX), ciprofloxacin (CIP), or doxycycline (DOC). Each treatment group was replicated seven times with three layer hens per replication. Results of the study showed that the average excretion rates of AMX in the 200, 100, and 50 mg/kg groups were 67.88, 55.82, and 66.15%, respectively, while those for CIP and DOC were 47.84, 51.85, and 44.87% and 82.67, 94.39, and 95.72%, respectively. The concentrations of the above veterinary drugs in manure decreased sharply in the withdrawal period (7, 28, and 10 d, respectively), for AMX, DOC, and CIP. Neither AMX nor DOC was detected in the manure after the withdrawal period. In contrast to AMX and DOC, the excretion rate of CIP was significantly lower and thus had a longer residence time. Ecological risk study, estimated using hazard quotient values, showed that AMX in the 100 and 50 mg/kg groups posed no risk to the environment after d 1 of withdrawal, while CIP in the 50 mg/kg group posed no risk to the environment from d 5 of withdrawal. CIP in the 200 and 100 mg/kg groups required 10 d withdrawal in order to pose no risk to the environment. In contrast, DOC residue during withdrawal in the manure posed no risk to the environment, thus making it more environmentally safe.
  2. Dareng EO, Coetzee SG, Tyrer JP, Peng PC, Rosenow W, Chen S, et al.
    Am J Hum Genet, 2024 Jun 06;111(6):1061-1083.
    PMID: 38723632 DOI: 10.1016/j.ajhg.2024.04.011
    To identify credible causal risk variants (CCVs) associated with different histotypes of epithelial ovarian cancer (EOC), we performed genome-wide association analysis for 470,825 genotyped and 10,163,797 imputed SNPs in 25,981 EOC cases and 105,724 controls of European origin. We identified five histotype-specific EOC risk regions (p value <5 × 10-8) and confirmed previously reported associations for 27 risk regions. Conditional analyses identified an additional 11 signals independent of the primary signal at six risk regions (p value <10-5). Fine mapping identified 4,008 CCVs in these regions, of which 1,452 CCVs were located in ovarian cancer-related chromatin marks with significant enrichment in active enhancers, active promoters, and active regions for CCVs from each EOC histotype. Transcriptome-wide association and colocalization analyses across histotypes using tissue-specific and cross-tissue datasets identified 86 candidate susceptibility genes in known EOC risk regions and 32 genes in 23 additional genomic regions that may represent novel EOC risk loci (false discovery rate <0.05). Finally, by integrating genome-wide HiChIP interactome analysis with transcriptome-wide association study (TWAS), variant effect predictor, transcription factor ChIP-seq, and motifbreakR data, we identified candidate gene-CCV interactions at each locus. This included risk loci where TWAS identified one or more candidate susceptibility genes (e.g., HOXD-AS2, HOXD8, and HOXD3 at 2q31) and other loci where no candidate gene was identified (e.g., MYC and PVT1 at 8q24) by TWAS. In summary, this study describes a functional framework and provides a greater understanding of the biological significance of risk alleles and candidate gene targets at EOC susceptibility loci identified by a genome-wide association study.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links