Displaying all 4 publications

Abstract:
Sort:
  1. Sirunyan AM, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Eur Phys J C Part Fields, 2021;81(9):800.
    PMID: 34781320 DOI: 10.1140/epjc/s10052-021-09538-2
    The measurement of the luminosity recorded by the CMS detector installed at LHC interaction point 5, using proton-proton collisions at s = 13 TeV in 2015 and 2016, is reported. The absolute luminosity scale is measured for individual bunch crossings using beam-separation scans (the van der Meer method), with a relative precision of 1.3 and 1.0% in 2015 and 2016, respectively. The dominant sources of uncertainty are related to residual differences between the measured beam positions and the ones provided by the operational settings of the LHC magnets, the factorizability of the proton bunch spatial density functions in the coordinates transverse to the beam direction, and the modeling of the effect of electromagnetic interactions among protons in the colliding bunches. When applying the van der Meer calibration to the entire run periods, the integrated luminosities when CMS was fully operational are 2.27 and 36.3 fb - 1 in 2015 and 2016, with a relative precision of 1.6 and 1.2%, respectively. These are among the most precise luminosity measurements at bunched-beam hadron colliders.
  2. CMS Collaboration, Sirunyan AM, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, et al.
    Eur Phys J C Part Fields, 2021;81(6):488.
    PMID: 34727143 DOI: 10.1140/epjc/s10052-021-09200-x
    Production cross sections of the Higgs boson are measured in the H → Z Z → 4 ℓ ( ℓ = e , μ ) decay channel. A data sample of proton-proton collisions at a center-of-mass energy of 13 TeV , collected by the CMS detector at the LHC and corresponding to an integrated luminosity of 137 fb - 1 is used. The signal strength modifier μ , defined as the ratio of the Higgs boson production rate in the 4 ℓ channel to the standard model (SM) expectation, is measured to be μ = 0.94 ± 0.07 (stat) - 0.08 + 0.09 (syst) at a fixed value of m H = 125.38 GeV . The signal strength modifiers for the individual Higgs boson production modes are also reported. The inclusive fiducial cross section for the H → 4 ℓ process is measured to be 2 . 84 - 0.22 + 0.23 (stat) - 0.21 + 0.26 (syst) fb , which is compatible with the SM prediction of 2.84 ± 0.15 fb for the same fiducial region. Differential cross sections as a function of the transverse momentum and rapidity of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet are measured. A new set of cross section measurements in mutually exclusive categories targeted to identify production mechanisms and kinematical features of the events is presented. The results are in agreement with the SM predictions.
  3. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Damanakis K, et al.
    Eur Phys J C Part Fields, 2023;83(8):722.
    PMID: 37578844 DOI: 10.1140/epjc/s10052-023-11833-z
    The production of Z bosons associated with jets is measured in pp collisions at s=13TeV with data recorded with the CMS experiment at the LHC corresponding to an integrated luminosity of 36.3fb-1. The multiplicity of jets with transverse momentum pT>30GeV is measured for different regions of the Z boson's pT(Z), from lower than 10GeV to higher than 100GeV. The azimuthal correlation Δϕ between the Z boson and the leading jet, as well as the correlations between the two leading jets are measured in three regions of pT(Z). The measurements are compared with several predictions at leading and next-to-leading orders, interfaced with parton showers. Predictions based on transverse-momentum dependent parton distributions and corresponding parton showers give a good description of the measurement in the regions where multiple parton interactions and higher jet multiplicities are not important. The effects of multiple parton interactions are shown to be important to correctly describe the measured spectra in the low pT(Z) regions.
  4. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Damanakis K, et al.
    Eur Phys J C Part Fields, 2023;83(7):587.
    PMID: 37440247 DOI: 10.1140/epjc/s10052-023-11630-8
    New sets of parameter tunes for two of the colour reconnection models, quantum chromodynamics-inspired and gluon-move, implemented in the pythia  8 event generator, are obtained based on the default CMS pythia  8 underlying-event tune, CP5. Measurements sensitive to the underlying event performed by the CMS experiment at centre-of-mass energies s=7 and 13TeV, and by the CDF experiment at 1.96TeV are used to constrain the parameters of colour reconnection models and multiple-parton interactions simultaneously. The new colour reconnection tunes are compared with various measurements at 1.96, 7, 8, and 13TeV including measurements of the underlying-event, strange-particle multiplicities, jet substructure observables, jet shapes, and colour flow in top quark pair (tt¯) events. The new tunes are also used to estimate the uncertainty related to colour reconnection modelling in the top quark mass measurement using the decay products of tt¯ events in the semileptonic channel at 13TeV.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links