Methodology: Patients between 20 and 70 years of age, either gender, ASA I and II, and scheduled for elective open major bowel surgery were included in the study. Patients who underwent laparoscopic and other surgeries were excluded. After routine induction of general anaesthesia, the patients were randomised to either the control group (traditional fluid therapy), the FloTrac group (based on stroke volume variation), or the PVI group (based on pleth variability index). Fluid input and output, recovery characteristics, and complications were noted.
Results: 306 patients, with 102 in each group, were enrolled. Five patients (control (1), FloTrac (2), and PVI (2)) were inoperable and were excluded. Demographic data, ASA PS, anaesthetic technique, duration of surgery, and surgical procedures were comparable. The control group received significantly more crystalloids (3200 ml) than the FloTrac (2000 ml) and PVI groups (1875 ml), whereas infusion of colloids was higher in the FloTrac (400-700 ml) and PVI (200-500 ml) groups than in the control group (0-500 ml). The control group had significantly positive net fluid balance intraoperatively (2500 ml, 9 ml/kg/h) compared to the FloTrac (1515 ml, 5.4 ml/kg/h) and PVI (1420 ml, 6 ml/kg/h) groups. Days to ICU stay, HDU stay, return of bowel movement, oral intake, morbidity, duration of hospital stay, and survival rate were comparable. The total number of complications was not different between the three groups. Anastomotic leaks occurred more often in the Control group than in the others, but the numbers were small.
Conclusions: Use of goal-directed fluid management, either with FloTrac or pleth variability index results in a lower volume infusion and lower net fluid balance. However, the complication rate is similar to that of traditional fluid therapy. This trial is registered with CTRI/2018/04/013016.
BACKGROUND: Cognitive impairments, altered emotional responsiveness, depression, and anxiety are the common neuropsychiatric co-morbidities observed in TLE patients. Mesenchymal stem cells (MSCs) transplantation has gained immense attention in treating TLE, as ~30% of patients do not respond to anti-epileptic drugs. While MSCs are known to cross the BBB, better CNS homing and therapeutic effects could be achieved when the systemic administration of MSC is timed with BBB damage following SE.
OBJECTIVES: The objectives of the present study are to investigate the effects of systemic administration of DPSCs/BM-MSCs timed with BBB damage on CNS homing of DPSCs/BM-MSCs, neurodegeneration, neuroinflammation and neuropsychiatric comorbidities in an animal model of TLE.
METHODOLOGY: We first assessed the BBB leakage following kainic acid-induced SE and timed the intravenous administration of DPSCs/BM-MSCs to understand the CNS homing/engraftment potential of DPSCs/BM-MSCs and their potential to mitigate neurodegeneration, neuroinflammation and neuropsychiatric comorbidities.
RESULTS: Our results revealed that systemic administration of DPSCs/BM-MSCs attenuated neurodegeneration, neuroinflammation, and ameliorated neuropsychiatric comorbidities. Three months following intravenous administration of DPSCs/BM-MSCs, we observed a negligible number of engrafted cells in the corpus callosum, sub-granular zone, and sub-ventricular zone.
CONCLUSION: Thus, it is evident that functional recovery is still achievable despite poor engraftment of MSCs into CNS following systemic administration.