The benthic foraminiferal diversity index was computed from Beypore estuary sediments. The abundance and diversity of Quinqueloculina lata, Textularia agglutinans, Haplophagmoides canariensis, and Quinqueloculina stelligera were dominated by stress-tolerant taxa such as Ammonia tepida, A.parkinsoniana, Nonion grateloupi, and N. scaphum in the estuary. The small-size foraminifera probably perished in a juvenile stage because of the high temperature and low salinity that prevailed in the ecosystem. The dominance of stress tolerant benthic foraminifera and absence of Elphidium species in the estuary suggest the prevalence of hypoxic (low-oxygen) conditions. The consistent low-diversity index of foraminifera indicates that the ecosystem is moderate to highly stressed ecologically in the Beypore estuary. The application of benthic foraminifera as a bioindicator for assessing the environmental stress in the Beypore estuary is key in monitoring these fragile coastal ecosystems.
In this study, hypercholesterolemic mice fed with Lactobacillus fermentum FTDC 8312 after a seven-week feeding trial showed a reduction in serum total cholesterol (TC) levels, accompanied by a decrease in serum low-density lipoprotein cholesterol (LDL-C) levels, an increase in serum high-density lipoprotein cholesterol (HDL-C) levels, and a decreased ratio of apoB100:apoA1 when compared to those fed with control or a type strain, L. fermentum JCM 1173. These have contributed to a decrease in atherogenic indices (TC/HDL-C) of mice on the FTDC 8312 diet. Serum triglyceride (TG) levels of mice fed with FTDC 8312 and JCM 1173 were comparable to those of the controls. A decreased ratio of cholesterol and phospholipids (C/P) was also observed for mice fed with FTDC 8312, leading to a decreased number of spur red blood cells (RBC) formation in mice. Additionally, there was an increase in fecal TC, TG, and total bile acid levels in mice on FTDC 8312 diet compared to those with JCM 1173 and controls. The administration of FTDC 8312 also altered the gut microbiota population such as an increase in the members of genera Akkermansia and Oscillospira, affecting lipid metabolism and fecal bile excretion in the mice. Overall, we demonstrated that FTDC 8312 exerted a cholesterol lowering effect that may be attributed to gut microbiota modulation.