Displaying all 5 publications

Abstract:
Sort:
  1. Chiew YS, Pretty CG, Shaw GM, Chiew YW, Lambermont B, Desaive T, et al.
    PMID: 28435689 DOI: 10.1186/s40814-015-0006-2
    BACKGROUND: Selecting positive end-expiratory pressure (PEEP) during mechanical ventilation is important, as it can influence disease progression and outcome of acute respiratory distress syndrome (ARDS) patients. However, there are no well-established methods for optimizing PEEP selection due to the heterogeneity of ARDS. This research investigates the viability of titrating PEEP to minimum elastance for mechanically ventilated ARDS patients.

    METHODS: Ten mechanically ventilated ARDS patients from the Christchurch Hospital Intensive Care Unit were included in this study. Each patient underwent a stepwise PEEP recruitment manoeuvre. Airway pressure and flow data were recorded using a pneumotachometer. Patient-specific respiratory elastance (Ers ) and dynamic functional residual capacity (dFRC) at each PEEP level were calculated and compared. Optimal PEEP for each patient was identified by finding the minima of the PEEP-Ers profile.

    RESULTS: Median Ers and dFRC over all patients and PEEP values were 32.2 cmH2O/l [interquartile range (IQR) 25.0-45.9] and 0.42 l [IQR 0.11-0.87]. These wide ranges reflect patient heterogeneity and variable response to PEEP. The level of PEEP associated with minimum Ers corresponds to a high change of functional residual capacity, representing the balance between recruitment and minimizing the risk of overdistension.

    CONCLUSIONS: Monitoring patient-specific Ers can provide clinical insight to patient-specific condition and response to PEEP settings. The level of PEEP associated with minimum-Ers can be identified for each patient using a stepwise PEEP recruitment manoeuvre. This 'minimum elastance PEEP' may represent a patient-specific optimal setting during mechanical ventilation.

    TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry: ACTRN12611001179921.

  2. Damanhuri NS, Chiew YS, Othman NA, Docherty PD, Pretty CG, Shaw GM, et al.
    Comput Methods Programs Biomed, 2016 Jul;130:175-85.
    PMID: 27208532 DOI: 10.1016/j.cmpb.2016.03.025
    BACKGROUND: Respiratory system modelling can aid clinical decision making during mechanical ventilation (MV) in intensive care. However, spontaneous breathing (SB) efforts can produce entrained "M-wave" airway pressure waveforms that inhibit identification of accurate values for respiratory system elastance and airway resistance. A pressure wave reconstruction method is proposed to accurately identify respiratory mechanics, assess the level of SB effort, and quantify the incidence of SB effort without uncommon measuring devices or interruption to care.

    METHODS: Data from 275 breaths aggregated from all mechanically ventilated patients at Christchurch Hospital were used in this study. The breath specific respiratory elastance is calculated using a time-varying elastance model. A pressure reconstruction method is proposed to reconstruct pressure waves identified as being affected by SB effort. The area under the curve of the time-varying respiratory elastance (AUC Edrs) are calculated and compared, where unreconstructed waves yield lower AUC Edrs. The difference between the reconstructed and unreconstructed pressure is denoted as a surrogate measure of SB effort.

    RESULTS: The pressure reconstruction method yielded a median AUC Edrs of 19.21 [IQR: 16.30-22.47]cmH2Os/l. In contrast, the median AUC Edrs for unreconstructed M-wave data was 20.41 [IQR: 16.68-22.81]cmH2Os/l. The pressure reconstruction method had the least variability in AUC Edrs assessed by the robust coefficient of variation (RCV)=0.04 versus 0.05 for unreconstructed data. Each patient exhibited different levels of SB effort, independent from MV setting, indicating the need for non-invasive, real time assessment of SB effort.

    CONCLUSION: A simple reconstruction method enables more consistent real-time estimation of the true, underlying respiratory system mechanics of a SB patient and provides the surrogate of SB effort, which may be clinically useful for clinicians in determining optimal ventilator settings to improve patient care.

  3. Jamaludin UK, M Suhaimi F, Abdul Razak NN, Md Ralib A, Mat Nor MB, Pretty CG, et al.
    Comput Methods Programs Biomed, 2018 Aug;162:149-155.
    PMID: 29903481 DOI: 10.1016/j.cmpb.2018.03.001
    BACKGROUND AND OBJECTIVE: Blood glucose variability is common in healthcare and it is not related or influenced by diabetes mellitus. To minimise the risk of high blood glucose in critically ill patients, Stochastic Targeted Blood Glucose Control Protocol is used in intensive care unit at hospitals worldwide. Thus, this study focuses on the performance of stochastic modelling protocol in comparison to the current blood glucose management protocols in the Malaysian intensive care unit. Also, this study is to assess the effectiveness of Stochastic Targeted Blood Glucose Control Protocol when it is applied to a cohort of diabetic patients.

    METHODS: Retrospective data from 210 patients were obtained from a general hospital in Malaysia from May 2014 until June 2015, where 123 patients were having comorbid diabetes mellitus. The comparison of blood glucose control protocol performance between both protocol simulations was conducted through blood glucose fitted with physiological modelling on top of virtual trial simulations, mean calculation of simulation error and several graphical comparisons using stochastic modelling.

    RESULTS: Stochastic Targeted Blood Glucose Control Protocol reduces hyperglycaemia by 16% in diabetic and 9% in nondiabetic cohorts. The protocol helps to control blood glucose level in the targeted range of 4.0-10.0 mmol/L for 71.8% in diabetic and 82.7% in nondiabetic cohorts, besides minimising the treatment hour up to 71 h for 123 diabetic patients and 39 h for 87 nondiabetic patients.

    CONCLUSION: It is concluded that Stochastic Targeted Blood Glucose Control Protocol is good in reducing hyperglycaemia as compared to the current blood glucose management protocol in the Malaysian intensive care unit. Hence, the current Malaysian intensive care unit protocols need to be modified to enhance their performance, especially in the integration of insulin and nutrition intervention in decreasing the hyperglycaemia incidences. Improvement in Stochastic Targeted Blood Glucose Control Protocol in terms of uen model is also a must to adapt with the diabetic cohort.

  4. Abu-Samah A, Knopp JL, Abdul Razak NN, Razak AA, Jamaludin UK, Mohamad Suhaimi F, et al.
    Med Devices (Auckl), 2019;12:215-226.
    PMID: 31239792 DOI: 10.2147/MDER.S187840
    Background: Stress-induced hyperglycemia is common in critically ill patients. A few forms of model-based glycemic control have been introduced to reduce this phenomena and among them is the automated STAR protocol which has been used in the Christchurch and Gyulá hospitals' intensive care units (ICUs) since 2010. Methods: This article presents the pilot trial assessment of STAR protocol which has been implemented in the International Islamic University Malaysia Medical Centre (IIUMMC) Hospital ICU since December 2017. One hundred and forty-two patients who received STAR treatment for more than 20 hours were used in the assessment. The initial results are presented to discuss the ability to adopt and adapt the model-based control framework in a Malaysian environment by analyzing its performance and safety. Results: Overall, 60.7% of blood glucose measurements were in the target band. Only 0.78% and 0.02% of cohort measurements were below 4.0 mmol/L and 2.2 mmol/L (the limitsfor mild and severe hypoglycemia, respectively). Treatment preference-wise, the clinical staff were favorable of longer intervention options when available. However, 1 hourly treatments were still used in 73.7% of cases. Conclusion: The protocol succeeded in achieving patient-specific glycemic control while maintaining safety and was trusted by nurses to reduce workload. Its lower performance results, however, give the indication for modification in some of the control settings to better fit the Malaysian environment.
  5. Chase JG, Preiser JC, Dickson JL, Pironet A, Chiew YS, Pretty CG, et al.
    Biomed Eng Online, 2018 Feb 20;17(1):24.
    PMID: 29463246 DOI: 10.1186/s12938-018-0455-y
    Critical care, like many healthcare areas, is under a dual assault from significantly increasing demographic and economic pressures. Intensive care unit (ICU) patients are highly variable in response to treatment, and increasingly aging populations mean ICUs are under increasing demand and their cohorts are increasingly ill. Equally, patient expectations are growing, while the economic ability to deliver care to all is declining. Better, more productive care is thus the big challenge. One means to that end is personalised care designed to manage the significant inter- and intra-patient variability that makes the ICU patient difficult. Thus, moving from current "one size fits all" protocolised care to adaptive, model-based "one method fits all" personalised care could deliver the required step change in the quality, and simultaneously the productivity and cost, of care. Computer models of human physiology are a unique tool to personalise care, as they can couple clinical data with mathematical methods to create subject-specific models and virtual patients to design new, personalised and more optimal protocols, as well as to guide care in real-time. They rely on identifying time varying patient-specific parameters in the model that capture inter- and intra-patient variability, the difference between patients and the evolution of patient condition. Properly validated, virtual patients represent the real patients, and can be used in silico to test different protocols or interventions, or in real-time to guide care. Hence, the underlying models and methods create the foundation for next generation care, as well as a tool for safely and rapidly developing personalised treatment protocols over large virtual cohorts using virtual trials. This review examines the models and methods used to create virtual patients. Specifically, it presents the models types and structures used and the data required. It then covers how to validate the resulting virtual patients and trials, and how these virtual trials can help design and optimise clinical trial. Links between these models and higher order, more complex physiome models are also discussed. In each section, it explores the progress reported up to date, especially on core ICU therapies in glycemic, circulatory and mechanical ventilation management, where high cost and frequency of occurrence provide a significant opportunity for model-based methods to have measurable clinical and economic impact. The outcomes are readily generalised to other areas of medical care.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links