Displaying all 2 publications

Abstract:
Sort:
  1. Reeve AH, Gower G, Pujolar JM, Smith BT, Petersen B, Olsson U, et al.
    Evol Lett, 2023 Feb 01;7(1):24-36.
    PMID: 37065434 DOI: 10.1093/evlett/qrac006
    Tropical islands are renowned as natural laboratories for evolutionary study. Lineage radiations across tropical archipelagos are ideal systems for investigating how colonization, speciation, and extinction processes shape biodiversity patterns. The expansion of the island thrush across the Indo-Pacific represents one of the largest yet most perplexing island radiations of any songbird species. The island thrush exhibits a complex mosaic of pronounced plumage variation across its range and is arguably the world's most polytypic bird. It is a sedentary species largely restricted to mountain forests, yet it has colonized a vast island region spanning a quarter of the globe. We conducted a comprehensive sampling of island thrush populations and obtained genome-wide SNP data, which we used to reconstruct its phylogeny, population structure, gene flow, and demographic history. The island thrush evolved from migratory Palearctic ancestors and radiated explosively across the Indo-Pacific during the Pleistocene, with numerous instances of gene flow between populations. Its bewildering plumage variation masks a biogeographically intuitive stepping stone colonization path from the Philippines through the Greater Sundas, Wallacea, and New Guinea to Polynesia. The island thrush's success in colonizing Indo-Pacific mountains can be understood in light of its ancestral mobility and adaptation to cool climates; however, shifts in elevational range, degree of plumage variation and apparent dispersal rates in the eastern part of its range raise further intriguing questions about its biology.
  2. Reeve AH, Kennedy JD, Pujolar JM, Petersen B, Blom MPK, Alström P, et al.
    Nat Commun, 2023 Dec 11;14(1):8215.
    PMID: 38081809 DOI: 10.1038/s41467-023-43964-y
    The processes generating the earth's montane biodiversity remain a matter of debate. Two contrasting hypotheses have been advanced to explain how montane populations form: via direct colonization from other mountains, or, alternatively, via upslope range shifts from adjacent lowland areas. We seek to reconcile these apparently conflicting hypotheses by asking whether a species' ancestral geographic origin determines its mode of mountain colonization. Island-dwelling passerine birds at the faunal crossroads between Eurasia and Australo-Papua provide an ideal study system. We recover the phylogenetic relationships of the region's montane species and reconstruct their ancestral geographic ranges, elevational ranges, and migratory behavior. We also perform genomic population studies of three super-dispersive montane species/clades with broad island distributions. Eurasian-origin species populated archipelagos via direct colonization between mountains. This mode of colonization appears related to ancestral adaptations to cold and seasonal climates, specifically short-distance migration. Australo-Papuan-origin mountain populations, by contrast, evolved from lowland ancestors, and highland distribution mostly precludes their further colonization of island mountains. Our study explains much of the distributional variation within a complex biological system, and provides a synthesis of two seemingly discordant hypotheses for montane community formation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links