Displaying all 6 publications

Abstract:
Sort:
  1. Ong WJ, Putri LK, Mohamed AR
    Chemistry, 2020 Aug 06;26(44):9710-9748.
    PMID: 32511824 DOI: 10.1002/chem.202000708
    Photocatalytic CO2 reduction is a revolutionary approach to solve imminent energy and environmental issues by replicating the ingenuity of nature. The past decade has witnessed an impetus in the rise of two-dimensional (2D) structure materials as advanced nanomaterials to boost photocatalytic activities. In particular, the use of 2D carbon-based materials is deemed as highly favorable, not only as a green material choice, but also due to their exceptional physicochemical and electrical properties. This Review article presents a diverse range of alterations and compositions derived from 2D carbon-based nanomaterials, mainly graphene and graphitic carbon nitride (g-C3 N4 ), which have remarkably ameliorated the photocatalytic CO2 performance. Herein, the rational design of the photocatalyst systems with consideration of the aspect of dimensionality and the resultant heterostructures at the interface are systematically analyzed to elucidate an insightful perspective on this pacey subject. Finally, a conclusion and outlook on the limitations and prospects of the cutting-edge research field are highlighted.
  2. Putri LK, Ng BJ, Ong WJ, Lee HW, Chang WS, Chai SP
    ACS Appl Mater Interfaces, 2017 Feb 08;9(5):4558-4569.
    PMID: 28068056 DOI: 10.1021/acsami.6b12060
    Owing to its superior properties and versatility, graphene has been proliferating the energy research scene in the past decade. In this contribution, nitrogen (N-) and boron (B-) doped reduced graphene oxide (rGO) variants were investigated as a sole photocatalyst for the green production of H2 and their properties with respect to photocatalysis were elucidated for the first time. N- and B-rGOs were facilely prepared via the pyrolysis of graphene oxide with urea and boron anhydride as their respective dopant source. The pyrolysis temperature was varied (600-800 °C for N-rGO and 800-1000 °C for B-rGO) in order to modify dopant loading percentage (%) which was found to be influential to photocatalytic activity. N-rGO600 (8.26 N at%) and B-rGO1000 (3.59 B at%), which holds the highest at% from each of their party, exhibited the highest H2 activity. Additionally, the effects of the nature of N and B bonding configuration in H2 photoactivity were also examined. This study demonstrates the importance of dopant atoms in graphene, rendering doping as an effective strategy to bolster photocatalytic activity for standalone graphene derivative photocatalysts.
  3. Yu X, Ng SF, Putri LK, Tan LL, Mohamed AR, Ong WJ
    Small, 2021 12;17(48):e2006851.
    PMID: 33909946 DOI: 10.1002/smll.202006851
    Graphitic carbon nitride (g-C3 N4 ) is a kind of ideal metal-free photocatalysts for artificial photosynthesis. At present, pristine g-C3 N4 suffers from small specific surface area, poor light absorption at longer wavelengths, low charge migration rate, and a high recombination rate of photogenerated electron-hole pairs, which significantly limit its performance. Among a myriad of modification strategies, point-defect engineering, namely tunable vacancies and dopant introduction, is capable of harnessing the superb structural, textural, optical, and electronic properties of g-C3 N4 to acquire an ameliorated photocatalytic activity. In view of the burgeoning development in this pacey field, a timely review on the state-of-the-art advancement of point-defect engineering of g-C3 N4 is of vital significance to advance the solar energy conversion. Particularly, insights into the intriguing roles of point defects, the synthesis, characterizations, and the systematic control of point defects, as well as the versatile application of defective g-C3 N4 -based nanomaterials toward photocatalytic water splitting, carbon dioxide reduction and nitrogen fixation will be presented in detail. Lastly, this review will conclude with a balanced perspective on the technical and scientific hindrances and future prospects. Overall, it is envisioned that this review will open a new frontier to uncover novel functionalities of defective g-C3 N4 -based nanostructures in energy catalysis.
  4. Ng BJ, Putri LK, Kong XY, Teh YW, Pasbakhsh P, Chai SP
    Adv Sci (Weinh), 2020 Apr;7(7):1903171.
    PMID: 32274312 DOI: 10.1002/advs.201903171
    As the world decides on the next giant step for the renewable energy revolution, scientists have begun to reinforce their headlong dives into the exploitation of solar energy. Hitherto, numerous attempts are made to imitate the natural photosynthesis of plants by converting solar energy into chemical fuels which resembles the "Z-scheme" process. A recreation of this system is witnessed in artificial Z-scheme photocatalytic water splitting to generate hydrogen (H2). This work outlines the recent significant implication of the Z-scheme system in photocatalytic water splitting, particularly in the role of electron mediator and the key factors that improve the photocatalytic performance. The Review begins with the fundamental rationales in Z-scheme water splitting, followed by a survey on the development roadmap of three different generations of Z-scheme system: 1) PS-A/D-PS (first generation), 2) PS-C-PS (second generation), and 3) PS-PS (third generation). Focus is also placed on the scaling up of the "leaf-to-tree" challenge of Z-scheme water splitting system, which is also known as Z-scheme photocatalyst sheet. A detailed investigation of the Z-scheme system for achieving H2 evolution from past to present accompanied with in-depth discussion on the key challenges in the area of Z-scheme photocatalytic water splitting are provided.
  5. Dahlan NAN, Putri LK, Er CC, Ng BJ, Ooi CW, Tan LL, et al.
    ACS Appl Mater Interfaces, 2023 Nov 22;15(46):53371-53381.
    PMID: 37935594 DOI: 10.1021/acsami.3c10243
    Establishing an effective metal-free photocatalyst for sustainable applications remains a huge challenge. Herein, we developed ultrathin oxygen-doped g-C3N4 nanosheets with carbon defects (OCvN) photocatalyst via a facile gas bubble template-assisted thermal copolymerization method. A series of OCvN with different dopant amounts ranging from 0 to 10% were synthesized and used as photocatalysts under illumination of low-power (2 × 18 W, 0.18 mW/cm2) and commercially available energy-saving light bulbs. Upon testing for photocatalytic Escherichia coli inactivation, the best-performing sample, OCvN-3, demonstrated an astonishing disinfection activity of over 7-log reduction after 3 h of illumination, boasting an 18-fold improvement in its antibacterial activity compared to that of pristine g-C3N4. The enhanced performance was attributed to the synergistic effects of increased surface area, extended visible light harvesting, improved electronic conductivity, and ultralow resistance to charge transfer. This study successfully introduced a green photocatalyst that demonstrates the most effective disinfection performance ever recorded among metal-free g-C3N4 materials. Its disinfection capabilities are comparable to those of metal-based photocatalysts when they are exposed to low-power light.
  6. Chong WK, Ng BJ, Lee YJ, Tan LL, Putri LK, Low J, et al.
    Nat Commun, 2023 Nov 24;14(1):7676.
    PMID: 37996415 DOI: 10.1038/s41467-023-43331-x
    Engineering an efficient semiconductor to sustainably produce green hydrogen via solar-driven water splitting is one of the cutting-edge strategies for carbon-neutral energy ecosystem. Herein, a superhydrophilic green hollow ZnIn2S4 (gZIS) was fabricated to realize unassisted photocatalytic overall water splitting. The hollow hierarchical framework benefits exposure of intrinsically active facets and activates inert basal planes. The superhydrophilic nature of gZIS promotes intense surface water molecule interactions. The presence of vacancies within gZIS facilitates photon energy utilization and charge transfer. Systematic theoretical computations signify the defect-induced charge redistribution of gZIS enhancing water activation and reducing surface kinetic barriers. Ultimately, the gZIS could drive photocatalytic pure water splitting by retaining close-to-unity stability for a full daytime reaction with performance comparable to other complex sulfide-based materials. This work reports a self-activated, single-component cocatalyst-free gZIS with great exploration value, potentially providing a state-of-the-art design and innovative aperture for efficient solar-driven hydrogen production to achieve carbon-neutrality.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links