Displaying all 4 publications

Abstract:
Sort:
  1. Shazia A, Xuan TZ, Chuah JH, Usman J, Qian P, Lai KW
    PMID: 34335736 DOI: 10.1186/s13634-021-00755-1
    Coronavirus disease of 2019 or COVID-19 is a rapidly spreading viral infection that has affected millions all over the world. With its rapid spread and increasing numbers, it is becoming overwhelming for the healthcare workers to rapidly diagnose the condition and contain it from spreading. Hence it has become a necessity to automate the diagnostic procedure. This will improve the work efficiency as well as keep the healthcare workers safe from getting exposed to the virus. Medical image analysis is one of the rising research areas that can tackle this issue with higher accuracy. This paper conducts a comparative study of the use of the recent deep learning models (VGG16, VGG19, DenseNet121, Inception-ResNet-V2, InceptionV3, Resnet50, and Xception) to deal with the detection and classification of coronavirus pneumonia from pneumonia cases. This study uses 7165 chest X-ray images of COVID-19 (1536) and pneumonia (5629) patients. Confusion metrics and performance metrics were used to analyze each model. Results show DenseNet121 (99.48% of accuracy) showed better performance when compared with the other models in this study.
  2. Zhang Q, Lee K, Qian P, Mansor Z, Ismail I, Guo Y, et al.
    J Adv Nurs, 2024 Nov 28.
    PMID: 39607180 DOI: 10.1111/jan.16541
    AIMS: To investigate the prevalence of rapid response team delays, survival distribution of admission to rapid response team delay and its prognostic factors.

    DESIGN: A retrospective single-centre study.

    METHODS: Data on rapid response team activations from 1 January 2018 to 31 December 2022 were retrieved from electronic medical records at a tertiary hospital in Hangzhou, China. All patients who met the eligibility criteria were included. Multivariable Cox regression analysis was conducted to analyse the data.

    RESULTS: Out of 636 patients included, 18.4% (117) experienced a delay, with a median (interquartile range) of 8.5 (12) days from admission to rapid response team activation. Six significant prognostic factors were found to be associated with the higher hazard ratio of rapid response team delay, including call time (05:01 PM and 7:59 AM), emergency admission, a higher Modified Early Warning Score, an admission diagnosis of infection, a comorbidity of respiratory failure/Acute Respiratory Distress Syndrome and the absence of lung infection.

    CONCLUSION: The prevalence of rapid response team delays was lower, and the days from admission to rapid response team delay was longer than in previous studies. Healthcare providers are suggested to prioritise the care of high-risk patient groups and provide proactive monitoring to ensure timely identification and management.

    IMPLICATIONS FOR PATIENT CARE: Implementing artificial intelligence in continuous monitoring systems for high-risk patients is recommended. The findings help nurses anticipate potential delays in rapid response team activation, enabling better preparedness.

    IMPACT: The study highlights the prevalence of rapid response team delays, timing from admission to rapid response team activation and six prognostic factors influencing delays. It could shape patient care and inform future research. Hospital administrators should review staffing, especially during night shifts, to minimise delays. Further qualitative research is needed to explore why nurses may delay rapid response team activation.

    REPORTING METHOD: The STROBE checklist was adhered to when reporting this study. 'No patient or public contribution'.

  3. Teo K, Yong CW, Muhamad F, Mohafez H, Hasikin K, Xia K, et al.
    J Healthc Eng, 2021;2021:9208138.
    PMID: 34765104 DOI: 10.1155/2021/9208138
    Quality of care data has gained transparency captured through various measurements and reporting. Readmission measure is especially related to unfavorable patient outcomes that directly bends the curve of healthcare cost. Under the Hospital Readmission Reduction Program, payments to hospitals were reduced for those with excessive 30-day rehospitalization rates. These penalties have intensified efforts from hospital stakeholders to implement strategies to reduce readmission rates. One of the key strategies is the deployment of predictive analytics stratified by patient population. The recent research in readmission model is focused on making its prediction more accurate. As cost-saving improvements through artificial intelligent-based health solutions are expected, the broad economic impact of such digital tool remains unknown. Meanwhile, reducing readmission rate is associated with increased operating expenses due to targeted interventions. The increase in operating margin can surpass native readmission cost. In this paper, we propose a quantized evaluation metric to provide a methodological mean in assessing whether a predictive model represents cost-effective way of delivering healthcare. Herein, we evaluate the impact machine learning has had on transitional care and readmission with proposed metric. The final model was estimated to produce net healthcare savings at over $1 million given a 50% rate of successfully preventing a readmission.
  4. Teoh YX, Lai KW, Usman J, Goh SL, Mohafez H, Hasikin K, et al.
    J Healthc Eng, 2022;2022:4138666.
    PMID: 35222885 DOI: 10.1155/2022/4138666
    Knee osteoarthritis (OA) is a deliberating joint disorder characterized by cartilage loss that can be captured by imaging modalities and translated into imaging features. Observing imaging features is a well-known objective assessment for knee OA disorder. However, the variety of imaging features is rarely discussed. This study reviews knee OA imaging features with respect to different imaging modalities for traditional OA diagnosis and updates recent image-based machine learning approaches for knee OA diagnosis and prognosis. Although most studies recognized X-ray as standard imaging option for knee OA diagnosis, the imaging features are limited to bony changes and less sensitive to short-term OA changes. Researchers have recommended the usage of MRI to study the hidden OA-related radiomic features in soft tissues and bony structures. Furthermore, ultrasound imaging features should be explored to make it more feasible for point-of-care diagnosis. Traditional knee OA diagnosis mainly relies on manual interpretation of medical images based on the Kellgren-Lawrence (KL) grading scheme, but this approach is consistently prone to human resource and time constraints and less effective for OA prevention. Recent studies revealed the capability of machine learning approaches in automating knee OA diagnosis and prognosis, through three major tasks: knee joint localization (detection and segmentation), classification of OA severity, and prediction of disease progression. AI-aided diagnostic models improved the quality of knee OA diagnosis significantly in terms of time taken, reproducibility, and accuracy. Prognostic ability was demonstrated by several prediction models in terms of estimating possible OA onset, OA deterioration, progressive pain, progressive structural change, progressive structural change with pain, and time to total knee replacement (TKR) incidence. Despite research gaps, machine learning techniques still manifest huge potential to work on demanding tasks such as early knee OA detection and estimation of future disease events, as well as fundamental tasks such as discovering the new imaging features and establishment of novel OA status measure. Continuous machine learning model enhancement may favour the discovery of new OA treatment in future.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links