Displaying all 3 publications

Abstract:
Sort:
  1. Rahiman SSF, Morgan M, Gray P, Shaw PN, Cabot PJ
    Peptides, 2017 04;90:48-54.
    PMID: 28219695 DOI: 10.1016/j.peptides.2017.02.004
    Dynorphin 1-17 (DYN 1-17) is biotransformed rapidly to a range of fragments in rodent inflamed tissue with dynorphin 3-14 (DYN 3-14) being the most stable and prevalent. DYN 1-17 has been shown previously to be involved in the regulation of inflammatory response following tissue injury, in which the biotransformation fragments of DYN 1-17 may possess similar features. This study investigated the effects of DYN 3-14 on lipopolysaccharide (LPS)-induced nuclear factor-kappaB/p65 (NF-κB/p65) nuclear translocation and the release of pro-inflammatory cytokines interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) in differentiated THP-1 cells. Treatment with DYN 3-14 (10nM) resulted in 35% inhibition of the LPS-induced nuclear translocation of NF-κB/p65. Furthermore, DYN 3-14 modulated both IL-1β and TNF-α release; inhibiting IL-1β and paradoxically augmenting TNF-α release in a concentration-independent manner. A number of opioids have been implicated in the modulation of the toll-like receptor 4 (TLR4), highlighting the complexity of their immunomodulatory effects. To determine whether DYN 3-14 modulates TLR4, HEK-Blue™-hTLR4 cells were stimulated with LPS in the presence of DYN 3-14. DYN 3-14 (10μM) inhibited TLR4 activation in a concentration-dependent fashion by suppressing the LPS signals around 300-fold lower than LPS-RS, a potent TLR4 antagonist. These findings indicate that DYN 3-14 is a potential TLR4 antagonist that alters cellular signaling in response to LPS and cytokine release, implicating a role for biotransformed endogenous opioid peptides in immunomodulation.
  2. Al-Amin M, Eltayeb NM, Hossain CF, Rahiman SSF, Khairuddean M, Muhamad Salhimi S
    J Asian Nat Prod Res, 2022 Jun 04.
    PMID: 35658750 DOI: 10.1080/10286020.2022.2081562
    Bioassay-guided separation afforded furanodienone 1,10-epoxide (9) as the new compound, curcolone (10) as partially described compound and ten known compounds; germacrone (1), furanodienone (2), curzerenone (3), curcumenol (4), zederone (5), comosone II (6), (1E,4E,8R)-8-hydroxygermacra-1(10),4,7(11)-trieno-12,8-lactone (7), 13-hydroxygermacrone (8), curcuzederone (11) and demethoxycurcumin (12). The study showed that germacrone, furanodienone, curzerenone, comosone II, 13-hydroxygermacrone, curcuzederone and demethoxycurcumin are the bioactive compounds of C. aeruginosa rhizomes. Comosone II significantly inhibited MDA-MB-231 cell migration and invasion through the inhibition of MMP-9 enzyme. The present study may lead to further anticancer studies of comosone II and supports the traditional uses of C. aeruginosa rhizomes.
  3. Othman HIA, Alkatib HH, Zaid A, Sasidharan S, Rahiman SSF, Lee TP, et al.
    Plants (Basel), 2022 Dec 27;12(1).
    PMID: 36616263 DOI: 10.3390/plants12010134
    The essential oil derived from Citrus plants has long been used for medicinal purposes, due to its broad spectrum of therapeutic characteristics. To date, approximately 162 Citrus species have been identified, and many investigational studies have been conducted to explore the pharmacological potential of Citrus spp. oils. This study investigated the volatile constituents of essential oil distilled from the leaves of C. hystrix, C. limon, C. pyriformis, and C. microcarpa, using gas chromatography-quadrupole mass spectrometry. A total of 80 secondary compounds were tentatively identified, representing 84.88-97.99% of the total ion count and mainly comprising monoterpene (5.20-76.15%) and sesquiterpene (1.36-27.14%) hydrocarbons, oxygenated monoterpenes (3.91-89.52%) and sesquiterpenes (0.21-38.87%), and other minor chemical classes (0.10-0.52%). In particular, 27 compounds (1.19-39.06%) were detected across all Citrus species. Principal component analysis of the identified phytoconstituents and their relative quantities enabled differentiation of the Citrus leaf oils according to their species, with the loading variables contributing to these metabolic differences being identified. The Citrus leaf oils were tested for their antioxidant and antiproliferative activities using 2,2-diphenyl-1-picryl-hydrazylhydrate (DPPH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. The results indicated that C. limon displayed the highest DPPH radical scavenging ability (IC50 value of 29.14 ± 1.97 mg/mL), while C. hystrix exhibited the lowest activity (IC50 value of 279.03 ± 10.37 mg/mL). On the other hand, all the Citrus oils exhibit potent antiproliferative activities against the HeLa cervical cancer cell line, with IC50 values of 11.66 μg/mL (C. limon), 20.41 μg/mL (C. microcarpa), 25.91 μg/mL (C. hystrix), and 87.17 μg/mL (C. pyriformis).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links