A disulfide constrained random heptapeptide library displayed on filamentous bacteriophage M13 was applied to select specific ligands that interact with Newcastle disease virus (NDV). A fusion phage carrying the amino acid sequence TLTTKLY was selected from the panning procedure. An antibody competition assay showed that the selected phage was capable of competing with the polyclonal antibodies raised against NDV for binding sites on the virus. Determination of the binding affinity of this phage with NDV by an equilibrium binding assay in solution revealed two different dissociation constants, suggesting that there could be two distinct binding sites for the phage on NDV. Synthetic peptides with the sequence CTLTTKLYC, either in linear or cyclic conformations inhibited the binding of phage bearing the same sequence to NDV. These peptides also inhibited the hemolytic activity of the virus as well as its propagation in embryonated chicken eggs.
A filamentous phage bearing the peptide sequence TLTTKLY was isolated from a heptapeptide phage display library against a velogenic Newcastle disease virus (NDV). In order to investigate the potential of this specific phage as an immunological reagent in virus pathotyping, an enzyme-linked immunosorbent assay (ELISA)-based method was developed. This method can differentiate the velogenic strains from the mesogenic and lentogenic strains. An equilibrium-binding assay in solution showed that the interactions between the phage and all the NDV strains gave rise to two widely differing dissociation constants (Kdrel). Based upon the first Kdrel values, NDV strains can be classified into two groups; the first comprises the velogenic strains, and the second consists of the mesogenic and lentogenic strains. These results indicate a high degree of correlation between the binding affinities and pathotyping of NDV strains using the TLTTKLY phage.