Displaying 1 publication

Abstract:
Sort:
  1. Ip YK, Randall DJ, Kok TK, Barzaghi C, Wright PA, Ballantyne JS, et al.
    J Exp Biol, 2004 Feb;207(Pt 5):787-801.
    PMID: 14747411
    Periophthalmodon schlosseri is an amphibious and obligatory air-breathing teleost, which is extremely tolerant to environmental ammonia. It actively excretes NH(4)(+) in ammonia loading conditions. For such a mechanism to operate efficaciously the fish must be able to prevent back flux of NH(3). P. schlosseri could lower the pH of 50 volumes (w/v) of 50% seawater in an artificial burrow from pH 8.2 to pH 7.4 in 1 day, and established an ambient ammonia concentration of 10 mmol l(-1) in 8 days. It could alter the rate of titratable acid efflux in response to ambient pH. The rate of net acid efflux (H(+) excretion) in P. schlosseri was pH-dependent, increasing in the order pH 6.0<7.0<8.0<8.5. Net acid flux in neutral or alkaline pH conditions was partially inhibited by bafilomycin, indicating the possible involvement of a V-type H(+)-ATPase. P. schlosseri could also increase the rate of H(+) excretion in response to the presence of ammonia in a neutral (pH 7.0) external medium. Increased H(+) excretion in P. schlosseri occurred in the head region where active excretion of NH(4)(+) took place. This would result in high concentrations of H(+) in the boundary water layer and prevent the dissociation of NH(4)(+), thus preventing a back flux of NH(3) through the branchial epithelia. P. schlosseri probably developed such an 'environmental ammonia detoxification' capability because of its unique behavior of burrow building in the mudflats and living therein in a limited volume of water. In addition, the skin of P. schlosseri had low permeability to NH(3). Using an Ussing-type apparatus with 10 mmol l(-1) NH(4)Cl and a 1 unit pH gradient (pH 8.0 to 7.0), the skin supported only a very small flux of NH(3) (0.0095 micromol cm(-2) min(-1)). Cholesterol content (4.5 micromol g(-1)) in the skin was high, which suggests low membrane fluidity. Phosphatidylcholine, which has a stabilizing effect on membranes, constituted almost 50% of the skin phospholipids, with phosphatidyleserine and phsophatidylethanolamine contributing only 13% and 15%, respectively. More importantly, P. schlosseri increased the cholesterol level (to 5.5 micromol g(-1)) and altered the fatty acid composition (increased total saturated fatty acid content) in its skin lipid after exposure to ammonia (30 mmol l(-1) at pH 7.0) for 6 days. These changes might lead to an even lower permeability to NH(3) in the skin, and reduced back diffusion of the actively excreted NH(4)(+) as NH(3) or the net influx of exogenous NH(3), under such conditions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links