Displaying all 3 publications

Abstract:
Sort:
  1. Fazzi C, Mohd-Shukri N, Denison FC, Saunders DH, Norman JE, Reynolds RM
    Scand J Med Sci Sports, 2018 Oct;28(10):2189-2195.
    PMID: 29772608 DOI: 10.1111/sms.13219
    Interventions to increase physical activity in pregnancy are challenging for morbidly obese women. Targeting sedentary behaviors may be a suitable alternative to increase energy expenditure. We aimed to determine total energy expenditure, and energy expended in sedentary activities in morbidly obese and lean pregnant women. We administered the Pregnancy Physical Activity Questionnaire (nonobjective) and the Actical accelerometer (objective) to morbidly obese (BMI ≥ 40 kg/m²) and lean (BMI ≤ 25 Kg/m²) pregnant women recruited in early (<24 weeks), and late (≥24 weeks) gestation. Data are mean (SD). Morbidly obese pregnant women reported expending significantly more energy per day in early (n = 140 vs 109; 3198.4 (1847.1) vs 1972.3 (10284.8) Kcal/d, P 
  2. Czamara D, Eraslan G, Page CM, Lahti J, Lahti-Pulkkinen M, Hämäläinen E, et al.
    Nat Commun, 2019 06 11;10(1):2548.
    PMID: 31186427 DOI: 10.1038/s41467-019-10461-0
    Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike's information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk.
  3. Tobias DK, Merino J, Ahmad A, Aiken C, Benham JL, Bodhini D, et al.
    Nat Med, 2023 Oct;29(10):2438-2457.
    PMID: 37794253 DOI: 10.1038/s41591-023-02502-5
    Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links