Natural hazards have a potentially large impact on economic growth, but measuring their economic impact is subject to a great deal of uncertainty. The central objective of this paper is to demonstrate a model--the natural disasters vulnerability evaluation (NDVE) model--that can be used to evaluate the impact of natural hazards on gross national product growth. The model is based on five basic indicators-natural hazards growth rates (αi), the national natural hazards vulnerability rate (ΩT), the natural disaster devastation magnitude rate (Π), the economic desgrowth rate (i.e. shrinkage of the economy) (δ), and the NHV surface. In addition, we apply the NDVE model to the north-east Japan earthquake and tsunami of March 2011 to evaluate its impact on the Japanese economy.
This paper attempts to evaluate the impact of massive infectious and contagious diseases and its final impact on the economic performance anywhere and anytime. We are considering to evaluate the case of Wuhan, China. We are taking in consideration the case of COVID-19 to be evaluated under a domestic, national, and international level impact. In this paper, we also propose a new simulator to evaluate the impact of massive infections and contagious diseases on the economic performance subsequently. This simulator is entitled "The Impact of Pandemics on the Economic Performance Simulator (IPEP-Simulator)" Hence, this simulator tries to show a macro and micro analysis with different possible scenarios simultaneously. Finally, the IPEP-Simulator was applied to the case of Wuhan-China respectively.