OBJECTIVE: We examined the association between sweet-beverage consumption (including total, sugar-sweetened, and artificially sweetened soft drink and juice and nectar consumption) and pancreatic cancer risk.
DESIGN: The study was conducted within the European Prospective Investigation into Cancer and Nutrition cohort. A total of 477,199 participants (70.2% women) with a mean age of 51 y at baseline were included, and 865 exocrine pancreatic cancers were diagnosed after a median follow-up of 11.60 y (IQR: 10.10-12.60 y). Sweet-beverage consumption was assessed with the use of validated dietary questionnaires at baseline. HRs and 95% CIs were obtained with the use of multivariable Cox regression models that were stratified by age, sex, and center and adjusted for educational level, physical activity, smoking status, and alcohol consumption. Associations with total soft-drink consumption were adjusted for juice and nectar consumption and vice versa.
RESULTS: Total soft-drink consumption (HR per 100 g/d: 1.03; 95% CI: 0.99, 1.07), sugar-sweetened soft-drink consumption (HR per 100 g/d: 1.02; 95% CI: 0.97, 1.08), and artificially sweetened soft-drink consumption (HR per 100 g/d: 1.04; 95% CI: 0.98, 1.10) were not associated with pancreatic cancer risk. Juice and nectar consumption was inversely associated with pancreatic cancer risk (HR per 100 g/d: 0.91; 95% CI: 0.84, 0.99); this association remained statistically significant after adjustment for body size, type 2 diabetes, and energy intake.
CONCLUSIONS: Soft-drink consumption does not seem to be associated with pancreatic cancer risk. Juice and nectar consumption might be associated with a modest decreased pancreatic cancer risk. Additional studies with specific information on juice and nectar subtypes are warranted to clarify these results.
OBJECTIVES: First, to summarize the main design features of a prospective case-control study -nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort- on plasma concentrations of persistent organic pollutants (POPs) and pancreatic cancer risk. And second, to assess the main methodological challenges posed by associations among characteristics and habits of study participants, fasting status, time from blood draw to cancer diagnosis, disease progression bias, basis of cancer diagnosis, and plasma concentrations of lipids and POPs. Results from etiologic analyses on POPs and pancreatic cancer risk, and other analyses, will be reported in future articles.
METHODS: Study subjects were 1533 participants (513 cases and 1020 controls matched by study centre, sex, age at blood collection, date and time of blood collection, and fasting status) enrolled between 1992 and 2000. Plasma concentrations of 22 POPs were measured by gas chromatography - triple quadrupole mass spectrometry (GC-MS/MS). To estimate the magnitude of the associations we calculated multivariate-adjusted odds ratios by unconditional logistic regression, and adjusted geometric means by General Linear Regression Models.
RESULTS: There were differences among countries in subjects' characteristics (as age, gender, smoking, lipid and POP concentrations), and in study characteristics (as time from blood collection to index date, year of last follow-up, length of follow-up, basis of cancer diagnosis, and fasting status). Adjusting for centre and time of blood collection, no factors were significantly associated with fasting status. Plasma concentrations of lipids were related to age, body mass index, fasting, country, and smoking. We detected and quantified 16 of the 22 POPs in more than 90% of individuals. All 22 POPs were detected in some participants, and the smallest number of POPs detected in one person was 15 (median, 19) with few differences by country. The highest concentrations were found for p,p'-DDE, PCBs 153 and 180 (median concentration: 3371, 1023, and 810 pg/mL, respectively). We assessed the possible occurrence of disease progression bias (DPB) in eight situations defined by lipid and POP measurements, on one hand, and by four factors: interval from blood draw to index date, tumour subsite, tumour stage, and grade of differentiation, on the other. In seven of the eight situations results supported the absence of DPB.
CONCLUSIONS: The coexistence of differences across study centres in some design features and participant characteristics is of relevance to other multicentre studies. Relationships among subjects' characteristics and among such characteristics and design features may play important roles in the forthcoming analyses on the association between plasma concentrations of POPs and pancreatic cancer risk.
METHODS AND FINDINGS: This prospective analysis included 471,495 adults from the European Prospective Investigation into Cancer and Nutrition (EPIC, 1992-2014, median follow-up: 15.3 y), among whom there were 49,794 incident cancer cases (main locations: breast, n = 12,063; prostate, n = 6,745; colon-rectum, n = 5,806). Usual food intakes were assessed with standardized country-specific diet assessment methods. The FSAm-NPS was calculated for each food/beverage using their 100-g content in energy, sugar, saturated fatty acid, sodium, fibres, proteins, and fruits/vegetables/legumes/nuts. The FSAm-NPS scores of all food items usually consumed by a participant were averaged to obtain the individual FSAm-NPS Dietary Index (DI) scores. Multi-adjusted Cox proportional hazards models were computed. A higher FSAm-NPS DI score, reflecting a lower nutritional quality of the food consumed, was associated with a higher risk of total cancer (HRQ5 versus Q1 = 1.07; 95% CI 1.03-1.10, P-trend < 0.001). Absolute cancer rates in those with high and low (quintiles 5 and 1) FSAm-NPS DI scores were 81.4 and 69.5 cases/10,000 person-years, respectively. Higher FSAm-NPS DI scores were specifically associated with higher risks of cancers of the colon-rectum, upper aerodigestive tract and stomach, lung for men, and liver and postmenopausal breast for women (all P < 0.05). The main study limitation is that it was based on an observational cohort using self-reported dietary data obtained through a single baseline food frequency questionnaire; thus, exposure misclassification and residual confounding cannot be ruled out.
CONCLUSIONS: In this large multinational European cohort, the consumption of food products with a higher FSAm-NPS score (lower nutritional quality) was associated with a higher risk of cancer. This supports the relevance of the FSAm-NPS as underlying nutrient profiling system for front-of-pack nutrition labels, as well as for other public health nutritional measures.