Renewable materials have some bearing on the environment and have since increased research works related to polymer composites. This work was conducted to investigate the effects of interwoven kenaf fibres and the use of kenaf fibres in composites. In this research, interwoven between kenaf and polyethylene terephthalate (PET) was prepared and epoxy was used as the polymer matrix to form composites. The kenaf fibre composites with various kenaf fibre contents (2, 5, 8, and 10 wt %) interwoven with (PET) fibres were prepared by using open mould method. The properties of kenaf/PET/epoxy composites (KPTE) were studied. The kenaf fibre composites characterization was determined based on their mechanical properties, water absorption, morphology and thermal properties. The tensile strength test was performed using Testometric machine. The finding shows that the strength increases as the amount of kenaf fibres in the composites increases. The composites with 10% kenaf fibres interwoven PET displayed the highest tensile strength (85.3 ± 2.9 MPa) while unfilled epoxy show the lowest tensile strength (64.1 ± 16.5 MPa). The addition of kenaf fibres minimally increases the water absorption up to about 1.4%. The increases of kenaf fibres also reduces the overall thermal stability of the composites compared to the PET and epoxy resin composites. The morphology properties of KPTE composites support the tensile properties surface of the composites. This study assists to propose the kenaf fibres as a potential filler for properties improvements in epoxy-based composites contributing to the development of another environment-friendly material.
Nowadays, Kenaf fiber is sustainably useful in marine structures and has become one of the materials that may be high in demand as it is light, biodegradable and environmental friendly. This study investigates the effect of fiber percentage on compressive strength of fiber reinforced concrete (FRC) and the relationship between compressive strength and time of FRC immersion in seawater. FRC concrete cubes were prepared using four different percentage of fiber (0%, 1.5%, 3.0% and 4.5%). These FRC were immersed in seawater for 7, 14 and 21 days for three consecutive weeks. Based on the experiment, it was found that there was improvement in compressive strength of FRC when compared to plain cement concrete. The results showedthat 3.0% of KF to cement matrix concrete determined the highest compressive strength of 205.43 Pa while 0% of KF fiber to cement concrete matrix (control specimen) showed the lowest compressive strength of 158.28 Pa. Also the addition of Kenaf fiber to cement concrete decreased the seawater absorption more than concrete with absolutely 0% of KF fiber to cement concrete (control specimen). In conclusion, the results did show significant improvement and a consistent trend on strength with the addition of FRC. This study also revealed that the percentage of water absorption was on the increase for 0, 7 and 14 days and become constant after day 21. This is due to manufacturing defects that occurred which block the water from entering the material and making the material absorb less water.