Displaying all 3 publications

Abstract:
Sort:
  1. Agarwal A, Sharma R, Durairajanayagam D, Cui Z, Ayaz A, Gupta S, et al.
    Urology, 2015 Mar;85(3):580-8.
    PMID: 25733269 DOI: 10.1016/j.urology.2014.11.030
    To compare the sperm protein profile between infertile men with unilateral varicocele and infertile men with bilateral varicocele.
  2. Samanta L, Agarwal A, Swain N, Sharma R, Gopalan B, Esteves SC, et al.
    J Urol, 2018 08;200(2):414-422.
    PMID: 29530785 DOI: 10.1016/j.juro.2018.03.009
    PURPOSE: Varicocele may disrupt testicular microcirculation and induce hypoxia-ischemia related degenerative changes in testicular cells and spermatozoa. Superoxide production at low oxygen concentration exacerbates oxidative stress in men with varicocele. Therefore, the current study was designed to study the role of mitochondrial redox regulation and its possible involvement in sperm dysfunction in varicocele associated infertility.

    MATERIALS AND METHODS: We identified differentially expressed mitochondrial proteins in 50 infertile men with varicocele and in 10 fertile controls by secondary liquid chromatography-tandem mass spectroscopy data driven in silico analysis. Identified proteins were validated by Western blot and immunofluorescence. Seminal oxidation-reduction potential was measured.

    RESULTS: We identified 22 differentially expressed proteins related to mitochondrial structure (LETM1, EFHC, MIC60, PGAM5, ISOC2 and import TOM22) and function (NDFSU1, UQCRC2 and COX5B, and the core enzymes of carbohydrate and lipid metabolism). Cluster analysis and 3-dimensional principal component analysis revealed a significant difference between the groups. All proteins studied were under expressed in infertile men with varicocele. Liquid chromatography-tandem mass spectroscopy data were corroborated by Western blot and immunofluorescence. Impaired mitochondrial function was associated with decreased expression of the proteins (ATPase1A4, HSPA2, SPA17 and APOA1) responsible for proper sperm function, concomitant with elevated seminal oxidation-reduction potential in the semen of infertile patients with varicocele.

    CONCLUSIONS: Impaired mitochondrial structure and function in varicocele may lead to oxidative stress, reduced ATP synthesis and sperm dysfunction. Mitochondrial differentially expressed proteins should be explored for the development of biomarkers as a predictor of infertility in patients with varicocele. Antioxidant therapy targeting sperm mitochondria may help improve the fertility status of these patients.

  3. Agarwal A, Parekh N, Panner Selvam MK, Henkel R, Shah R, Homa ST, et al.
    World J Mens Health, 2019 Sep;37(3):296-312.
    PMID: 31081299 DOI: 10.5534/wjmh.190055
    Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm's potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links