Displaying all 3 publications

Abstract:
Sort:
  1. Akbar N, Siddiqui R, Sagathevan KA, Khan NA
    Appl Microbiol Biotechnol, 2019 May;103(10):3955-3964.
    PMID: 30941460 DOI: 10.1007/s00253-019-09783-2
    The morbidity and mortality associated with bacterial infections have remained significant despite chemotherapeutic advances. With the emergence of drug-resistant bacterial strains, the situation has become a serious threat to the public health. Thus, there is an urgent need to identify novel antibacterials. The majority of antibiotics available in the market are produced by bacteria isolated from soil. However, the low-hanging fruit has been picked; hence, there is a need to mine bacteria from unusual sources. With this in mind, it is important to note that animals and pests such as cockroaches, snake, crocodiles, and water monitor lizard come across pathogenic bacteria regularly, yet flourish in contaminated environments. These species must have developed methods to defend themselves to counter pathogens. Although the immune system is known to possess antiinfective properties, gut bacteria of animals/pests may also offer a potential source of novel antibacterial agents, and it is the subject of this study. This paper discusses our current knowledge of bacteria isolated from land and marine animals with antibacterial properties and to propose untapped sources for the isolation of bacteria to mine potentially novel antibiotic molecules.
  2. Ali SM, Siddiqui R, Sagathevan KA, Khan NA
    Folia Microbiol (Praha), 2021 Apr;66(2):285-291.
    PMID: 33704690 DOI: 10.1007/s12223-021-00860-6
    The evolution of multiple-drug resistant bacteria is contributing to the global antimicrobial crisis, hence driving us to search for novel antimicrobial(s). Among animals, invertebrates represent up to 80% of all known species suggesting their wide distribution. Despite their ubiquitous and plentiful nature, they have been largely unexplored as potential source of antibacterials. In this study, we selected a broad range of invertebrates from terrestrial and marine environments and tested their lysates for antibacterial activity against methicillin-resistant Staphylococcus aereus (MRSA) and neuropathogenic Escherichia coli K1. Cockroaches, centipedes, tarantulas, prawns, lobster, and mud crabs showed antibacterial activity with selected lysates exhibiting more than 90% bactericidal effects. The red-headed centipede's hemolymph showed 90% and 50% bacteriostatic activity against MRSA and E. coli K1, respectively. Tarantula's body extracts exhibited antibacterial activity against MRSA and E. coli K1. Gut extracts of tiger prawn exhibited more than 90% bacteriostatic activity against both bacteria. The selected lobster and mud crab extract exhibited up to 90% growth inhibitory activity against MRSA. Overall, these results showed that selected invertebrates are an untapped source of broad-spectrum antibacterial activity and suggest the presence of biologically active molecules.
  3. Siddiqui R, Jeyamogan S, Ali SM, Abbas F, Sagathevan KA, Khan NA
    Exp Parasitol, 2017 Dec;183:194-200.
    PMID: 28917711 DOI: 10.1016/j.exppara.2017.09.008
    Crocodiles exist in unsanitary environments, feed on rotten meat, are often exposed to heavy metals such as arsenic, cadmium, cobalt, chromium, mercury, nickel, lead, selenium, tolerate high levels of radiation, and are amid the very few species to survive the catastrophic Cretaceous-Tertiary extinction event, nonetheless they can live for up to a 100 years. Moreover, as they live in unhygienic conditions, they regularly come across pathogens. Logically, we postulate that crocodiles possess mechanisms to defend themselves from noxious agents as well as protecting themselves from pathogens. To test this hypothesis, various organ lysates and serum of Crocodylus palustris were prepared. Amoebicidal assays were performed using Acanthamoeba castellanii belonging to the T4 genotype. Cytotoxicity assays were performed using Prostate cancer cells culture by measuring lactate dehydrogenase release as a marker for cell death. Growth inhibition assays were performed to determine the growth inhibitory effects of various organ lysates. Serum and heart lysates of Crocodylus palustris exhibited powerful anti-tumor activity exhibiting more than 70% Prostate cancer cell death (P 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links