Displaying all 2 publications

Abstract:
Sort:
  1. Kitahashi T, Ogawa S, Soga T, Sakuma Y, Parhar I
    Endocrinology, 2007 Dec;148(12):5822-30.
    PMID: 17823257
    The role of steroid/thyroid hormones in the regulation of endocrine cells at the level of the pituitary has remained unclear. Therefore, using single-cell quantitative real-time PCR, we examined absolute amounts of transcripts for nuclear receptors [estrogen receptors (ERs) alpha, beta, and gamma; androgen receptors (ARs) a and b; glucocorticoid receptors (GRs) 1, 2a, and 2b; and thyroid hormone receptors (TRs) alpha1, alpha2, and beta] in pituitary cells of immature (IM) and mature (M) male tilapia, Oreochromis niloticus. In the two reproductive stages, ACTH cells expressed only ERbeta, whereas all other pituitary cell types expressed ERalpha + beta, and a subpopulation coexpressed ARa, ARb, GR1, GR2b, and TRbeta but lacked ERgamma, GR2a, TRalpha1, and TRalpha2. IM males had high percentages of LH cells (IM 46.0% vs. M 10.0%), GH cells (IM 23.3% vs. M 7.9%), and prolactin cells (IM 68.8% vs. M 6.0%) with ERbeta, and TSH cells (IM 19.2% vs. M 0.0%) and MSH cells (IM 25.6% vs. M 0.0%) with ERalpha + TRbeta. A high percentage of FSH cells in IM males expressed ERbeta (IM 46.9% vs. M 18.8%), and FSH cells in M males showed significantly high GR1 transcripts (IM 76.0 +/- 5.0 vs. M 195.0 +/- 10.7 copies per cell; P < 0.05), suggesting that FSH cells are regulated differently in the two reproductive stages. Coexpression of ERalpha + beta in high percentages of cells of the GH family (GH, IM 43.8% vs. M 14.3%; prolactin, IM 8.3% vs. M 59.7%; somatolactin, IM 22.2% vs. M 42.2%) suggests that the expression of both ERs is important for functionality. Thus, differential coexpression of genes for nuclear receptors in subpopulations of pituitary cell types suggests multiple steroid/thyroid hormone regulatory pathways at the level of the pituitary during the two reproductive stages.
  2. Yoneda M, Guillaume V, Ikeda F, Sakuma Y, Sato H, Wild TF, et al.
    Proc Natl Acad Sci U S A, 2006 Oct 31;103(44):16508-13.
    PMID: 17053073
    Nipah virus (NiV), a paramyxovirus, was first discovered in Malaysia in 1998 in an outbreak of infection in pigs and humans and incurred a high fatality rate in humans. Fruit bats, living in vast areas extending from India to the western Pacific, were identified as the natural reservoir of the virus. However, the mechanisms that resulted in severe pathogenicity in humans (up to 70% mortality) and that enabled crossing the species barrier were not known. In this study, we established a system that enabled the rescue of replicating NiVs from a cloned DNA by cotransfection of a constructed full-length cDNA clone and supporting plasmids coding virus nucleoprotein, phosphoprotein, and polymerase with the infection of the recombinant vaccinia virus, MVAGKT7, expressing T7 RNA polymerase. The rescued NiV (rNiV), by using the newly developed reverse genetics system, showed properties in vitro that were similar to the parent virus and retained the severe pathogenicity in a previously established animal model by experimental infection. A recombinant NiV was also developed, expressing enhanced green fluorescent protein (rNiV-EGFP). Using the virus, permissibility of NiV was compared with the presence of a known cellular receptor, ephrin B2, in a number of cell lines of different origins. Interestingly, two cell lines expressing ephrin B2 were not susceptible for rNiV-EGFP, indicating that additional factors are clearly required for full NiV replication. The reverse genetics for NiV will provide a powerful tool for the analysis of the molecular mechanisms of pathogenicity and cross-species infection.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links