Mangrove land use changes of varied intensities have long been a problem in tropical mangrove forests. This has resulted in various degrees of mangrove land use modification, which catch many interests in the region for research. The research provided here is a bibliometric analysis of scholarly articles published around the world in various publication document types on changes in land use of tropical mangrove forests based on remote sensing and Geographical Information System (GIS). Scientific data analysis was undertaken by using bibliometric approaches on 6,574 papers extracted from the Scopus databases between 2010 and 2020. The findings revealed that the number of publications continuously climbed from under 400 to an average of 50-60 per year till 2019. The data showed that the mangrove forest modifications study gained traction when the highest number of citations, 9,236 in 2015, were observed. We can also notice that the overall number of citations fluctuated a lot during the first five years (2010-2015) but increased from 2013 to 2015. The findings demonstrate how remote sensing satellites have aided vegetation and land study in recent years. The findings also revealed that the analysis tools of Land Use Change, Vegetation Index, Mangrove, Tropical Country, Remote Sensing, and Tropical contributed to scientific knowledge of current issues of mangrove land use change in the tropical region. The authors' keywords, Remote Sensing in particular, supplied roughly 43%, Normalized Difference Vegetation Index (13%), Vegetation Index (9%), and other keywords contributed less than 7%. The growth pattern of the keywords "MODIS" and "Landsat" implies that both will stay important over the next five years, according to an analysis of the type of satellite used in land use assessment. Meanwhile, papers pertaining to policy on land use change, food security, and forest resources were evaluated in order to highlight policy and academic research findings on the topics. The application of the Normalized Difference Vegetation Index, which is a very relevant tool that can be used in monitoring land use changes and assessing vegetation status because it is a desirable technique in measuring plant health and vigour, can help fill the research gaps presented in this study. This review can help with the development of better mangrove land use change approaches in tropical mangroves and around the world using satellite remote sensing and GIS.
The jurisdictional approach concept emerged in response to the widespread failure of sectoral forest conservation projects. Despite its increasing popularity, understanding jurisdictional approach outcomes is challenging, given that many remain in either the formation or implementation stage. Furthermore, diverse stakeholders hold different perspectives on what exactly a jurisdictional approach is intended to pursue. These different perspectives are important to unravel, as having a shared understanding of the outcomes is important to build the critical support needed for it. This study aims to add to the limited evidence with a case study in Sabah, Malaysia, which is committed to addressing a leading deforestation driver (palm oil) through sustainability certification in a jurisdiction. We used Q-methodology to explore stakeholder perceptions, revealing three distinct perspectives regarding what outcomes jurisdictional approaches should pursue. We asked about outcomes achievable within ten years (2022-2032) and considering real-world constraints. We found different perspectives regarding economic, environmental, governance, and smallholders' welfare outcomes. However, we found consensus among stakeholders about some outcomes: (i) that achieving zero-deforestation is untenable, (ii) that issuing compensation or incentives to private land owners to not convert forests into plantations is unrealistic, (iii) that the human well-being of plantation workers could improve through better welfare, and (iv) the free, prior and informed consent given by local communities being required legally. The findings offer insights into key stakeholders' perceptions of the deliverables of jurisdictional approaches and the difficulty of achieving its objectives under real-world constraints.
Currently, the available indices to measure mangrove health are not comprehensive. An integrative ecological-socio economic index could give a better picture of the mangrove ecosystem health. This method explored all key biological, hydrological, ecological and socio-economic variables to form a comprehensive mangrove quality index. A total of 10 out of 43 variables were selected based on principal component analysis (PCA). They are aboveground biomass, crab abundance, soil carbon, soil nitrogen, number of phytoplankton species, number of diatom species, dissolved oxygen, turbidity, education level and fishing time spent by fishers. Two types of indices were successfully developed to indicate the health status viz., (1) Mangrove quality index for a specific category (MQISi ) and, (2) Overall mangrove quality index (MQI) to reflect the overall health status of the ecosystem. The indices for the five different categories were mangrove biotic integrity index ( M Q I S 1 ), mangrove soil index ( M Q I S 2 ), marine-mangrove index ( M Q I S 3 ), mangrove-hydrology index ( M Q I S 4 ) and mangrove socio-economic index ( M Q I S 5 ). The quality of the mangroves was classified from 1 to 5 viz. 1 (worst), 2 (bad), 3 (moderate), 4 (good), 5 (excellent). These MQI class could reflect the quality of mangrove forest which could be managed with the objective of improving its quality. Advantages of this method include: •PCA to select metrics from ecological-socioeconomic variables•Formulation of MQI based on selected metrics•Comprehensive index to classify mangrove ecosystem health.