Blastocystis is a prevalent infectious agent found in the gastrointestinal tract of humans and animals. While the morphology of Blastocystis has been extensively studied, there is still a lack of comprehensive research on its ultrastructure, especially regarding surface characteristics and their correlation with pathogenic potential. Additionally, the subtyping of Blastocystis does not provide information on the isolate's pathogenicity. This study aimed to examine the morphology and the cell surface of Blastocystis in avian and non-human primates, including peafowl, pheasant, and lion-headed tamarin. By employing light microscopy and scanning electron microscopy (SEM), this study provides the first evidence of the cellular and surface features of Blastocystis in these animal species. Our findings revealed distinct variations in cell size, shape, and surface morphology among the different host species. Notably, the isolates from peafowl exhibited larger cell sizes compared to the isolates from the pheasant. However, interestingly, both animal species were found to exhibit the same Blastocystis ST6. It was also observed that the surface structure of Blastocystis from different hosts displayed a diverse range of patterns, including mesh-like appearances, deep indentations, and attachments to bacteria. Additionally, findings also revealed the presence of a rough surface structure in peafowl, a characteristic that has been previously linked to pathogenicity and symptomatic infection in animals, as indicated by earlier studies. The findings contribute to our understanding of the morphological features and the surface characteristic of Blastocystis in different host species, shedding light on the parasite's adaptations and potential implications for host health.
There has been increasing interest in the study of Blastocystis in the last two decades. Many studies have been carried out in human and animal hosts including environmental sources, but there is little or no information on the occurrence of Blastocystis in water sources worldwide. Therefore, this study aimed at assessing the occurrence of Blastocystis in water sources across the world from 2005 to 2022, noting the method of detection and the distribution of the subtypes from various water sources. A literature search was performed on internet-based databases including Google search, PubMed, Scopus, and Web of Science. Upon application of the criteria for inclusion, 25 articles revealing the occurrence of Blastocystis in water sources in 15 countries were included in the review. Blastocystis occurrence varies across water sources ranging from 0% in a drinking water source in Venezuela to 100% in rivers; well water, stored water, and fishpond in Nepal and Malaysia; and fountain water, irrigation water, and rainwater in Italy, Spain, and Thailand. The occurrence of the parasite was significantly associated with the coliform count, temperature, conductivity, dissolved oxygen, turbidity, total dissolved solids, and chemical oxygen demand. A total of 11 Blastocystis subtypes were identified in water sources worldwide, namely, ST1-ST8, ST10, ST23, and ST26 in which ST1 and ST3 were the most prevalent subtypes. Considering the importance of Blastocystis as a waterborne parasite, the subtype distribution and morphological distinction in water sources need to be carried out using molecular and electron microscopic techniques. Existing studies have covered only about 10% of the world's countries.