INTRODUCTION: Haemoglobin Bart's (Hb Bart's) level is associated with α-thalassaemia traits in neonates, enabling early diagnosis of α-thalassaemia. The study aimed to detect and quantify the Hb Bart's using Cord Blood (CB) and CE Neonat Fast Hb (NF) progammes on fresh and dried blood spot (DBS) specimen respectively by capillary electrophoresis (CE).
METHODS: Capillarys Hemoglobin (E) Kit (for CB) and Capillarys Neonat Hb Kit (for NF) were used to detect and quantify Hb Bart's by CE in fresh cord blood and dried blood spot (DBS) specimens respectively. High performance liquid chromatography (HPLC) using the β-Thal Short Programme was also performed concurrently with CE analysis. Confirmation was obtained by multiplex ARMS Gap PCR.
RESULTS: This study was performed on 600 neonates. 32/600 (5.3%) samples showed presence of Hb Bart's peak using the NF programme while 33/600 (5.5%) were positive with CB programme and HPLC methods. The range of Hb Bart's using NF programme and CB programme were (0.5-4.1%) and (0.5-7.1%), respectively. Molecular analysis confirmed all positive samples possessed α-thalassaemia genetic mutations, with 23/33 cases being αα/--SEA, four -α3.7/-α3.7, two αα/-α3.7 and three αα/ααCS. Fifty Hb Bart's negative samples were randomly tested for α-genotypes, three were also found to be positive for α-globin gene mutations. Thus, resulting in sensitivity of 91.7% and 88.9% and specificity of 100% for the Capillarys Cord Blood programme and Capillarys Neonat Fast programme respectively.
CONCLUSION: Both CE programmes using fresh or dried cord blood were useful as a screening tool for α-thalassaemia in newborns. All methods show the same specificity (100%) with variable, but acceptable sensitivities in the detection of Hb Bart.
Haemoglobin Constant Spring (Hb CS) mutation and single gene deletions are common underlying genetic abnormalities for alpha thalassaemias. Co-inheritance of deletional and non-deletional alpha (alpha) thalassaemias may result in various thalassaemia syndromes. Concomitant co-inheritance with beta (beta) and delta (delta) gene abnormalities would result in improved clinical phenotype. We report here a 33-year-old male patient who was admitted with dengue haemorrhagic fever, with a background history of Grave's disease, incidentally noted to have mild hypochromic microcytic red cell indices. Physical examination revealed no thalassaemic features or hepatosplenomegaly. His full blood picture showed hypochromic microcytic red cells with normal haemoglobin (Hb) level. Quantitation of Hb using high performance liquid chromatography (HPLC) and capillary electrophoresis (CE) revealed raised Hb F, normal Hb A2 and Hb A levels. There was also small peak of Hb CS noted in CE. H inclusions was negative. Kleihauer test was positive with heterocellular distribution of Hb F among the red cells. DNA analysis for alpha globin gene mutations showed a single -alpha(-3.7) deletion and Hb CS mutation. These findings were suggestive of compound heterozygosity of Hb CS and a single -alpha(-3.7) deletion with a concomitant heterozygous deltabeta thalassaemia. Co-inheritance of Hb CS and a single -alpha(-3.7) deletion is expected to result at the very least in a clinical phenotype similar to that of two alpha genes deletion. However we demonstrate here a phenotypic modification of alpha thalassemia presumptively as a result of co-inheritance with deltabeta chain abnormality as suggested by the high Hb F level.