INTRODUCTION: Ruxolitinib is the first approved drug for treatment of myelofibrosis, but its impact of outcome after allogeneic stem cell transplantation (ASCT) is unknown.
PATIENTS AND METHODS: We reported on 159 myelofibrosis patients (pts) with a median age of 59 years (r: 28-74) who received reduced intensity ASCT between 2000 and 2015 in eight German centers from related (n = 23), matched (n = 86) or mismatched (n = 50) unrelated donors. Forty-six (29%) patients received ruxolitinib at any time point prior to ASCT. The median daily dose of ruxolitinib was 30 mg (range 10-40 mg) and the median duration of treatment was 4.9 months (range 0.4-39.1 months).
RESULTS: Primary graft failure was seen in 2 pts (4%) in the ruxolitinib and 3 (2%) in the non-ruxolitinib group. Engraftment and incidence of acute GVHD grade II to IV and III/IV did not differ between groups (37% vs 39% and 19% vs 28%, respectively), nor did the non-relapse mortality at 2 years (23% vs 23%). A trend for lower risk of relapse was seen in the ruxolitinib group (9% vs 17%, P = .2), resulting in a similar 2 year DFS and OS (68% vs 60% and 73% vs 70%, respectively). No difference in any outcome variable could be seen between ruxolitinib responders and those who failed or lost response to ruxolitinib.
CONCLUSIONS: These results suggest that ruxolitinib pretreatment in myelofibrosis patient does not negatively influence outcome after allogeneic stem cell transplantation.
Study site: 8 health clinics in Germany
We present first evidence that the cosine of the CP-violating weak phase 2β is positive, and hence exclude trigonometric multifold solutions of the Cabibbo-Kobayashi-Maskawa (CKM) Unitarity Triangle using a time-dependent Dalitz plot analysis of B^{0}→D^{(*)}h^{0} with D→K_{S}^{0}π^{+}π^{-} decays, where h^{0}∈{π^{0},η,ω} denotes a light unflavored and neutral hadron. The measurement is performed combining the final data sets of the BABAR and Belle experiments collected at the ϒ(4S) resonance at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain (471±3)×10^{6}BB[over ¯] pairs recorded by the BABAR detector and (772±11)×10^{6}BB[over ¯] pairs recorded by the Belle detector. The results of the measurement are sin2β=0.80±0.14(stat)±0.06(syst)±0.03(model) and cos2β=0.91±0.22(stat)±0.09(syst)±0.07(model). The result for the direct measurement of the angle β of the CKM Unitarity Triangle is β=[22.5±4.4(stat)±1.2(syst)±0.6(model)]°. The measurement assumes no direct CP violation in B^{0}→D^{(*)}h^{0} decays. The quoted model uncertainties are due to the composition of the D^{0}→K_{S}^{0}π^{+}π^{-} decay amplitude model, which is newly established by performing a Dalitz plot amplitude analysis using a high-statistics e^{+}e^{-}→cc[over ¯] data sample. CP violation is observed in B^{0}→D^{(*)}h^{0} decays at the level of 5.1 standard deviations. The significance for cos2β>0 is 3.7 standard deviations. The trigonometric multifold solution π/2-β=(68.1±0.7)° is excluded at the level of 7.3 standard deviations. The measurement resolves an ambiguity in the determination of the apex of the CKM Unitarity Triangle.
A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The datasets used correspond to an integrated luminosity of up to 5 and 20 fb^{-1} of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak t channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is m_{t}=172.52±0.14(stat)±0.30(syst) GeV, with a total uncertainty of 0.33 GeV.
The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.