Displaying all 2 publications

Abstract:
Sort:
  1. Alahmad B, Al-Hemoud A, Kang CM, Almarri F, Kommula V, Wolfson JM, et al.
    Environ Pollut, 2021 Aug 01;282:117016.
    PMID: 33848912 DOI: 10.1016/j.envpol.2021.117016
    BACKGROUND: Kuwait and the Gulf region have a desert, hyper-arid and hot climate that makes outdoor air sampling challenging. The region is also affected by intense dust storms. Monitoring challenges from the harsh climate have limited data needed to inform appropriate regulatory actions to address air pollution in the region.

    OBJECTIVES: To compare gravimetric measurements with existing networks that rely on beta-attenuation measurements in a desert climate; determine the annual levels of PM2.5 and PM10 over a two-year period in Kuwait; assess compliance with air quality standards; and identify and quantify PM2.5 sources.

    METHODS: We custom-designed particle samplers that can withstand large quantities of dust without their inlet becoming overloaded. The samplers were placed in two populated residential locations, one in Kuwait City and another near industrial and petrochemical facilities in Ali Sabah Al-Salem (ASAS) to collect PM2.5 and PM10 samples for mass and elemental analysis. We used positive matrix factorization to identify PM2.5 sources and apportion their contributions.

    RESULTS: We collected 2339 samples during the period October 2017 through October 2019. The beta-attenuation method in measuring PM2.5 consistently exceeded gravimetric measurements, especially during dust events. The annual levels for PM2.5 in Kuwait City and ASAS were 41.6 ± 29.0 and 47.5 ± 27.6 μg/m3, respectively. Annual PM2.5 levels in Kuwait were nearly four times higher than the U.S. National Ambient Air Quality Standard. Regional pollution was a major contributor to PM2.5 levels in both locations accounting for 44% in Kuwait City and 46% in ASAS. Dust storms and re-suspended road dust were the second and third largest contributors to PM2.5, respectively.

    CONCLUSIONS: The premise that frequent and extreme dust storms make air quality regulation futile is dubious. In this comprehensive particulate pollution analysis, we show that the sizeable regional anthropogenic particulate sources warrant national and regional mitigation strategies to ensure compliance with air quality standards.

  2. Marlier ME, Liu T, Yu K, Buonocore JJ, Koplitz SN, DeFries RS, et al.
    Geohealth, 2019 Jul;3(7):178-189.
    PMID: 32159040 DOI: 10.1029/2019GH000191
    Emissions of particulate matter from fires associated with land management practices in Indonesia contribute to regional air pollution and mortality. We assess the public health benefits in Indonesia, Malaysia, and Singapore from policies to reduce fires by integrating information on fire emissions, atmospheric transport patterns, and population exposure to fine particulate matter (PM2.5). We use adjoint sensitivities to relate fire emissions to PM2.5 for a range of meteorological conditions and find that a Business-As-Usual scenario of land use change leads, on average, to 36,000 excess deaths per year into the foreseeable future (the next several decades) across the region. These deaths are largely preventable with fire reduction strategies, such as blocking fires in peatlands, industrial concessions, or protected areas, which reduce the health burden by 66, 45, and 14%, respectively. The effectiveness of these different strategies in mitigating human health impacts depends on the location of fires relative to the population distribution. For example, protecting peatlands through eliminating all fires on such lands would prevent on average 24,000 excess deaths per year into the foreseeable future across the region because, in addition to storing large amounts of fuel, many peatlands are located directly upwind of densely populated areas. We also demonstrate how this framework can be used to prioritize restoration locations for the Indonesian Peatland Restoration Agency based on their ability to reduce pollution exposure and health burden. This scientific framework is publicly available through an online decision support tool that allows stakeholders to readily determine the public health benefits of different land management strategies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links