OBJECTIVES: To validate the accuracy of virtual FFR pullback curves compared to wire-based FFR pullbacks and to assess their clinical utility using patient-reported outcomes.
METHODS: Pooled analysis of two prospective studies, including patients with hemodynamically significant (FFR ≤ 0.80) coronary artery disease (CAD). Virtual and wire-based FFR pullbacks were compared to assess the accuracy of virtual pullbacks to characterize CAD as focal or diffuse. Pullbacks were analyzed visually and quantitatively using the pullback pressure gradient (PPG). Patients underwent PCI, and the Seattle Angina Questionnaire (SAQ) was administered at 3-month follow-up.
RESULTS: A total of 298 patients (300 vessels) with both virtual and wire-based pullbacks who underwent PCI were included in the analysis. The mean age was 61.8 ± 8.8, and 15% were female. The agreement on the visual adjudication of the CAD pattern was fair (Cohen's Kappa: 0.31, 95% confidence interval: 0.18-0.45). The mean PPG were 0.65 ± 0.18 from virtual pullbacks and 0.65 ± 0.13 from wire-based pullbacks (r = 0.68, mean difference 0, limits of agreement -0.27 to 0.28). At follow-up, patients with high virtual PPG (>0.67) had higher SAQ angina frequency scores (i.e., less angina) than those with low virtual PPG (SAQ scores 92.0 ± 14.3 vs. 85.5 ± 23.1, p = 0.022).
CONCLUSION: Virtual FFR pullback curves showed moderate agreement with wire-based FFR pullbacks. Nonetheless, patients with focal disease based on virtual PPG reported greater improvement in angina after PCI.
OBJECTIVES: This study aims to characterize patients with ANOCA by measuring their minimal microvascular resistance and to examine the pattern of vascular remodeling associated with these measurements.
METHODS: The authors prospectively included patients with ANOCA undergoing continuous thermodilution assessment. Lumen volume and vessel-specific myocardial mass were quantified using coronary computed tomography angiography (CTA). CMD was defined as coronary flow reserve <2.5 and high minimal microvascular resistance as >470 WU.
RESULTS: A total of 153 patients were evaluated; 68 had CMD, and 22 of them showed high microvascular resistance. In patients with CMD, coronary flow reserve was 1.9 ± 0.38 vs 3.2 ± 0.81 in controls (P < 0.001). Lumen volume was significantly correlated with minimal microvascular resistance (r = -0.59 [95% CI: -0.45 to -0.71]; P < 0.001). In patients with CMD and high microvascular resistance, lumen volume was 40% smaller than in controls (512.8 ± 130.3 mm3 vs 853.2 ± 341.2 mm3; P < 0.001). Epicardial lumen volume assessed by coronary CTA was independently associated with minimal microvascular resistance (P < 0.001). The predictive capacity of lumen volume from coronary CTA for detecting high microvascular resistance showed an area under the curve of 0.79 (95% CI: 0.69-0.88).
CONCLUSIONS: Patients with CMD and high minimal microvascular resistance have smaller epicardial vessels than those without CMD. Coronary CTA detected high minimal microvascular resistance with very good diagnostic capacity. Coronary CTA could potentially aid in the diagnostic pathway for patients with ANOCA.