An intercomparison exercise (IC) on whole body dosemeters to determine the quantity personal dose equivalent Hp (10) in photon radiation fields was jointly organised and conducted by the International Atomic Energy Agency (IAEA) and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) for individual monitoring services (IMS) in Asia and the Pacific region. This was arranged to help the IMS in the region to achieve a more accurate dosimetry service and to improve their performance. Twenty-four IMS participated in this IC. Four sets of dosemeters were irradiated using X-ray and gamma radiation qualities at 0° and 20° angle of incidence, respectively. All the IMS provided results that were within the acceptable limits defined by the IAEA. However, only a minority of participants reported confidence intervals that included the reference dose, for each exposure scenario. For few systems, the overall performance could be significantly improved by reviewing calibration procedures.
Soil samples from vegetable farmland in densely populated wards of Nepal were analyzed for natural radionuclide levels, employing a NaI(Tl) 3" [Formula: see text] 3" gamma detector. The study aimed to evaluate the causes of radiation risk, attributing it to soil contamination resulting from the rapid urbanization and concretization that followed the earthquake in 2015. The activity concentration of radium-226, thorium-232, and potassium-40 and the ranges observed are 2.080±0.084-33.675±1.356 Bq kg[Formula: see text], 17.222±0.198-119.949±1.379 Bq kg[Formula: see text], and 11.203 ± 0.325-748.828±21.716 Bq kg[Formula: see text], respectively. The average values obtained for hazard indices are as follows: radium equivalent activity (82.779 Bq kg[Formula: see text]), absorbed dose rate (36.394 nGy h[Formula: see text]), annual effective dose equivalent (0.045 mSv yearr[Formula: see text]), gamma index (0.291), external hazard index (0.224), internal hazard index (0.253), excess lifetime cancer risk (0.159), annual gonadal dose equivalent (243.278 mSv year[Formula: see text]), alpha index (0.054), and activity utilization index (0.716). However, in most places, thorium-232 concentration is greater than those of the world average and recommended values. In specific locations such as Ward 4 in Baluwatar, the soil was found to have concentrations of Ra[Formula: see text] and K[Formula: see text] exceeding recommended limits. Despite this localized concern, the overall analysis of hazard indices across the studied areas revealed that most values were within permissible limits. This suggests that, on a broader scale, radiation exposure may not be a significant concern in the investigated regions. Nonetheless, the study recommends regular monitoring in additional locations to ensure a comprehensive and ongoing assessment of radiation levels.
This paper presents the results of the evaluation of the uncertainty in measurement of the personal dose equivalent, Hp(10), at nine individual monitoring services (IMSs) in Asia and the Pacific region. Different types of passive dosemeters were type-tested according to the International Electrotechnical Commission 62387 requirements. The uncertainty in measurement was calculated using the Guide to the Expression of Uncertainty in Measurement approach. Expanded uncertainties ranged between 24 and 86% (average = 38%) for Hp(10) values around 1 mSv and between 14 and 40% (average = 27%) for doses around the annual dose limit, Hp(10) = 20 mSv. The expanded uncertainties were lower than the 1.5 factor in either direction proposed by the International Commission on Radiological Protection for doses near the relevant dose limits. This indicates an acceptable level of uncertainty for all participating IMSs. Uncertainty evaluation will help the IMSs to acknowledge the accuracy of their measurements.