Displaying all 3 publications

Abstract:
Sort:
  1. Yap CK, Shahbazi A, Zakaria MP
    Bull Environ Contam Toxicol, 2012 Dec;89(6):1205-10.
    PMID: 23052577 DOI: 10.1007/s00128-012-0838-x
    In this study, the ranges of pollutants found in the soft tissues of Perna viridis collected from Kg. Masai and Kg. Sg. Melayu, both located in the Straits of Johore, were 0.85-1.58 μg/g dry weight (dw) for Cd, 5.52-12.2 μg/g dw for Cu, 5.66-8.93 μg/g dw for Ni and 63.4-72.3 μg/g dw for Zn, and 36.4-244 ng/g dry weight for ∑PAHs. Significantly (p < 0.05) higher concentrations of Cd, Cu, Ni, Zn and ∑PAHs in the mussels were found in the water of a seaport site at Kg. Masai than a non-seaport site at Kg. Sg. Melayu population. The ratios of low molecular weight/high molecular weight hydrocarbons (2.94-3.42) and fluoranthene/pyrene (0.43-0.45) in mussels from both sites indicated the origin of the PAHs to be mainly petrogenic. This study has demonstrated the utility of using the soft tissues of P. viridis as a biomonitor of PAH contamination and bioavailability in the coastal waters of Peninsular Malaysia.
  2. Mirsadeghi SA, Zakari MP, Yap CK, Shahbazi A
    J Environ Sci (China), 2011;23(2):336-45.
    PMID: 21517010
    The concentration of carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) present in the sediment and water of Peninsular Malaysia as well as in the cockle Anadara granosa was investigated. Samples were extracted and analysed with gas chromatography-mass spectrometry. The concentrations of total carcinogenic polycyclic aromatic hydrocarbons (t-PAHs) were measured between 0.80 +/- 0.04 to 162.96 +/- 14.74 ng/g wet weight (ww) in sediment, between 21.85 +/- 2.18 to 76.2 +/- 10.82 ng/L in water samples and between 3.34 +/- 0.77 to 46.85 +/- 5.50 ng/g ww in the cockle tissue. The risk assessment of probable human carcinogens in the Group B2 PAHs was calculated and assessed in accordance with the standards of the United States Environmental Protection Agency (US EPA). Case I in the toxicity assessment analysed the cancer risk to consumers of Malaysian blood cockle. Case II assessed the risk of cancer from exposure to PAHs from multiple pathways. The average cancer risk of case I and case II were found to be classifiable as unsafe according to the US EPA standard. The cancer risk due to c-PAHs acquired by the ingestion of blood cockle was (8.82 +/- 0.54) x 10-6 to (2.67 +/- 0.06) x 10(-2), higher than the US EPA risk management criterion. The non-cancer risks associated with multiple pathways in Kuala Gula, Kuala Juru and Kuala Perlis were higher than the U.S. EPA safe level, but the non-cancer risk for eating blood cockle was below the level of U.S. EPA concern.
  3. Chandru K, Zakaria MP, Anita S, Shahbazi A, Sakari M, Bahry PS, et al.
    Mar Pollut Bull, 2008 May;56(5):950-62.
    PMID: 18328505 DOI: 10.1016/j.marpolbul.2008.01.028
    The East Coast of Peninsular Malaysia faces the South China Sea and is vulnerable to oil pollution because of intense petroleum production activities in the area. The South China Sea is also a favored route for supertankers carrying crude oil to the Far East. Consequently, oil spills can occur, causing pollution and contamination in the surrounding areas. Residual oil spills stranded on coastal beaches usually end up as tar-balls. Elucidating the sources of tar-balls using a molecular marker approach is essential in assessing environmental impacts and perhaps settling legal liabilities for affected parties. This study utilizes a multimodal molecular marker approach through the use of diagnostic ratios of alkanes, hopanes, and polycyclic aromatic hydrocarbons (PAHs) to determine the source, distribution and weathering of tar-balls. Hopane ratios (e.g., C29/C30, and summation C31-C35/C30 ratios) were used to identify the sources of tar-balls. The weathering effects were distinguished by using alkanes, namely the unresolved complex mixture (UCM) and low molecular weight/high molecular weight (L/H) ratios. Similarly, PAHs were also used for the determination of weathering processes undergone by the tar-balls. This multimodal molecular marker gave a very strong indication of the sources of tar-balls in this study. For example, 16 out of 17 samples originated from South East Asian Crude Oil (SEACO) with one sample from Merang, Terengganu originating from North Sea Oil (Troll). The TRME-2 sample may have come from a supertanker's ballast water discharge. The second possibility is that the tar-ball may have been transported via oceanographic currents. All 'weathered' sample characterizations were based on the presence of UCM and other ratios. The multimodal molecular marker approach applied in this study has enabled us to partially understand the transport behavior of tar-balls in the marine environment and has revealed insights into the weathering process of tar-balls.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links