Displaying all 3 publications

Abstract:
Sort:
  1. Herrera M, Klein SG, Campana S, Chen JE, Prasanna A, Duarte CM, et al.
    ISME J, 2021 01;15(1):141-153.
    PMID: 32934356 DOI: 10.1038/s41396-020-00768-y
    Coral reef research has predominantly focused on the effect of temperature on the breakdown of coral-dinoflagellate symbioses. However, less is known about how increasing temperature affects the establishment of new coral-dinoflagellate associations. Inter-partner specificity and environment-dependent colonization are two constraints proposed to limit the acquisition of more heat tolerant symbionts. Here, we investigated the symbiotic dynamics of various photosymbionts in different host genotypes under "optimal" and elevated temperature conditions. To do this, we inoculated symbiont-free polyps of the sea anemone Exaiptasia pallida originating from Hawaii (H2), North Carolina (CC7), and the Red Sea (RS) with the same mixture of native symbiont strains (Breviolum minutum, Symbiodinium linucheae, S. microadriaticum, and a Breviolum type from the Red Sea) at 25 and 32 °C, and assessed their ITS2 composition, colonization rates, and PSII photochemical efficiency (Fv/Fm). Symbiont communities across thermal conditions differed significantly for all hosts, suggesting that temperature rather than partner specificity had a stronger effect on symbiosis establishment. Overall, we detected higher abundances of more heat resistant Symbiodiniaceae types in the 32 °C treatments. Our data further showed that PSII photophysiology under elevated temperature improved with thermal pre-exposure (i.e., higher Fv/Fm), yet, this effect depended on host genotype and was influenced by active feeding as photochemical efficiency dropped in response to food deprivation. These findings highlight the role of temperature and partner fidelity in the establishment and performance of symbiosis and demonstrate the importance of heterotrophy for symbiotic cnidarians to endure and recover from stress.
  2. Herrera M, Klein SG, Schmidt-Roach S, Campana S, Cziesielski MJ, Chen JE, et al.
    Glob Chang Biol, 2020 Jul 06.
    PMID: 32627905 DOI: 10.1111/gcb.15263
    Enhancing the resilience of corals to rising temperatures is now a matter of urgency, leading to growing efforts to explore the use of heat tolerant symbiont species to improve their thermal resilience. The notion that adaptive traits can be retained by transferring the symbionts alone, however, challenges the holobiont concept, a fundamental paradigm in coral research. Holobiont traits are products of a specific community (holobiont) and all its co-evolutionary and local adaptations, which might limit the retention or transference of holobiont traits by exchanging only one partner. Here, we evaluate how interchanging partners affect the short- and long-term performance of holobionts under heat stress using clonal lineages of the cnidarian model system Aiptasia (host and Symbiodiniaceae strains) originating from distinct thermal environments. Our results show that holobionts from more thermally variable environments have higher plasticity to heat stress, but this resilience could not be transferred to other host genotypes through the exchange of symbionts. Importantly, our findings highlight the role of the host in determining holobiont productivity in response to thermal stress and indicate that local adaptations of holobionts will likely limit the efficacy of interchanging unfamiliar compartments to enhance thermal tolerance.
  3. Hudson LN, Newbold T, Contu S, Hill SL, Lysenko I, De Palma A, et al.
    Ecol Evol, 2017 Jan;7(1):145-188.
    PMID: 28070282 DOI: 10.1002/ece3.2579
    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links