Displaying all 5 publications

Abstract:
Sort:
  1. Kumarasingha R, Palombo EA, Bhave M, Yeo TC, Lim DS, Tu CL, et al.
    Int J Parasitol, 2014 Apr;44(5):291-8.
    PMID: 24583111 DOI: 10.1016/j.ijpara.2014.01.008
    Traditional healers in Sarawak, Malaysia, use plants such as Picria fel-terrae, Linariantha bicolor and Lansium domesticum to treat gastrointestinal infections. This study aimed to test whether their nematocidal activities could be confirmed in vitro using highly standardised Caenorhabditis elegans models. We applied eight different ethanol solubilised plant extracts and two commercial anthelmintic drugs to larval and adult stages of C. elegans in vitro. Seven C. elegans strains were evaluated, one wild type and six strains with GFP-tagged stress response pathways to help characterise and compare the pathways affected by plant extracts. Our in vitro screen confirmed that both of the commercial anthelmintic drugs and five of the eight traditionally used plant extracts had significant nematocidal activity against both larval and adult C. elegans. The most effective extracts were from P. fel-terrae. The plant extracts triggered different stress response pathways from the commercial anthelmintic drugs. This study showed that using traditional knowledge of plant medicinal properties in combination with a C. elegans in vitro screen provided a rapid and economical test with a high hit rate compared with the random screening of plants for nematocidal activities. The use of transgenic C. elegans strains may allow this approach to be refined further to investigate the mode of action of active extracts.
  2. Stebbing J, Zhang H, Xu Y, Lit LC, Green AR, Grothey A, et al.
    Oncogene, 2021 May 04.
    PMID: 33947963 DOI: 10.1038/s41388-021-01794-6
  3. Stebbing J, Zhang H, Xu Y, Lit LC, Green AR, Grothey A, et al.
    Oncogene, 2015 Apr 16;34(16):2103-14.
    PMID: 24909178 DOI: 10.1038/onc.2014.129
    Kinase suppressor of Ras-1 (KSR1) facilitates signal transduction in Ras-dependent cancers, including pancreatic and lung carcinomas but its role in breast cancer has not been well studied. Here, we demonstrate for the first time it functions as a tumor suppressor in breast cancer in contrast to data in other tumors. Breast cancer patients (n>1000) with high KSR1 showed better disease-free and overall survival, results also supported by Oncomine analyses, microarray data (n=2878) and genomic data from paired tumor and cell-free DNA samples revealing loss of heterozygosity. KSR1 expression is associated with high breast cancer 1, early onset (BRCA1), high BRCA1-associated ring domain 1 (BARD1) and checkpoint kinase 1 (Chk1) levels. Phospho-profiling of major components of the canonical Ras-RAF-mitogen-activated protein kinases pathway showed no significant changes after KSR1 overexpression or silencing. Moreover, KSR1 stably transfected cells formed fewer and smaller size colonies compared to the parental ones, while in vivo mouse model also demonstrated that the growth of xenograft tumors overexpressing KSR1 was inhibited. The tumor suppressive action of KSR1 is BRCA1 dependent shown by 3D-matrigel and soft agar assays. KSR1 stabilizes BRCA1 protein levels by reducing BRCA1 ubiquitination through increasing BARD1 abundance. These data link these proteins in a continuum with clinical relevance and position KSR1 in the major oncoprotein pathways in breast tumorigenesis.
  4. Stebbing J, Zhang H, Xu Y, Lit LC, Green AR, Grothey A, et al.
    Oncogene, 2021 May;40(19):3473.
    PMID: 33888869 DOI: 10.1038/s41388-021-01759-9
  5. Sheng B, Pushpanathan K, Guan Z, Lim QH, Lim ZW, Yew SME, et al.
    Lancet Diabetes Endocrinol, 2024 Aug;12(8):569-595.
    PMID: 39054035 DOI: 10.1016/S2213-8587(24)00154-2
    Artificial intelligence (AI) use in diabetes care is increasingly being explored to personalise care for people with diabetes and adapt treatments for complex presentations. However, the rapid advancement of AI also introduces challenges such as potential biases, ethical considerations, and implementation challenges in ensuring that its deployment is equitable. Ensuring inclusive and ethical developments of AI technology can empower both health-care providers and people with diabetes in managing the condition. In this Review, we explore and summarise the current and future prospects of AI across the diabetes care continuum, from enhancing screening and diagnosis to optimising treatment and predicting and managing complications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links