Displaying all 2 publications

Abstract:
Sort:
  1. Sia CS, Tey BT, Goh BH, Low LE
    Colloids Surf B Biointerfaces, 2024 Sep;241:114051.
    PMID: 38954935 DOI: 10.1016/j.colsurfb.2024.114051
    There has been a surge in effort in the development of various solid nanoparticles as Pickering emulsion stabilizers in the past decades. Regardless, the exploration of stabilizers that simultaneously stabilize and deliver bioactive has been limited. For this, liposomes with amphiphilic nature have been introduced as Pickering emulsion stabilizers but these nano-sized vesicles lack targeting specificity. Therefore in this study, superparamagnetic iron oxide nanoparticles (SPION) encapsulated within liposomes (MLP) were used as Pickering emulsion stabilizers to prepare pH and magnetic-responsive Pickering emulsions. A stable MLP-stabilized Pickering emulsion formulation was established by varying the MLP pH, concentration, and oil loading during the emulsification process. The primary stabilization mechanism of the emulsion under pH variation was identified to be largely associated with the MLP phosphate group deprotonation. When subjected to sequential pH adjustment to imitate the gastrointestinal digestion pH environment, a recovery in Pickering emulsion integrity was observed as the pH changes from acidic to alkaline. By incorporating SPION, the Pickering emulsion can be guided to the targeted site under the influence of a magnetic field without compromising emulsion stability. Overall, the results demonstrated the potential of MLP-stabilized Pickering emulsion as a dual pH- and magnetic-responsive drug delivery carrier with the ability to co-encapsulate hydrophobic and hydrophilic bioactive.
  2. Rajoo A, Siva SP, Sia CS, Chan ES, Tey BT, Low LE
    Eur J Pharm Biopharm, 2024 Dec;205:114572.
    PMID: 39486631 DOI: 10.1016/j.ejpb.2024.114572
    Cosmeceuticals, focusing on enhancing skin health and appearance, heavily rely on emulsions as one of the common mediums. These emulsions pose a challenge due to their dependence on surfactants which are essential for stability but are causing concerns about environmental impact as well as evolving consumer preferences. This has led to research focused on Pickering emulsions (PEs), which are colloidal particle-based emulsion alternatives. Compared to conventional emulsions, PEs offer enhanced stability and functionality in addition to serving as a sustainable alternative but still pose challenges such as rheological control and requiring further improvement in long-term stability, whereby the limitations could be addressed through the introduction of a hydrogel network. In this review, we first highlight the strategies and considerations to optimize active ingredient (AI) absorption and penetration in a PE-based formulation. We then delve into a comprehensive overview of the potential of Pickering-based cosmeceutical emulsions including their attractive features, the various Pickering particles that can be employed, past studies and their limitations. Further, PE hydrogels (PEHs), which combines the features between PE and hydrogel as an innovative solution to address challenges posed by both conventional emulsions and PEs in the cosmeceutical industry is explored. Moreover, concerns related to toxicity and biocompatibility are critically examined, alongside considerations of scalability and commercial viability, providing a forward-looking perspective on potential future research directions centered on the application of PEHs in the cosmeceutical field.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links