Orthoreovirus is a nonenveloped double-stranded RNA virus under the Reoviridae family. This group of viruses, especially mammalian orthoreovirus (MRV), are reported with great therapeutic values due to their oncolytic effects. In this review, the life cycle and oncolytic effect of MRV and a few emerging reoviruses were summarized. This article also highlights the challenges and strategies of utilizing MRV and the emerging reoviruses, avian orthoreovirus (ARV) and pteropine orthoreovirus (PRV), as oncolytic viruses (OVs). Besides, the emergence of potential ARV and PRV as OVs were discussed in comparison to MRV. Finally, the risk of reovirus as zoonosis or reverse zoonosis (zooanthroponosis) were debated, and concerns were raised in this article, which warrant continue surveillance of reovirus (MRV, ARV, and PRV) in animals, humans, and the environment.
The human immunodeficiency virus (HIV) is a type of lentivirus that targets the human immune system and leads to acquired immunodeficiency syndrome (AIDS) at a later stage. Up to 2021, there are millions still living with HIV and many have lost their lives. To date, many anti-HIV compounds have been discovered in living organisms, especially plants and marine sponges. However, no treatment can offer a complete cure, but only suppressing it with a life-long medication, known as combined antiretroviral therapy (cART) or highly active antiretroviral therapy (HAART) which are often associated with various adverse effects. Also, it takes many years for a discovered compound to be approved for clinical use. Thus, by employing advanced technologies such as automation, conducting systematic screening and testing protocols may boost the discovery and development of potent and curative therapeutics for HIV infection/AIDS. In this review, we aim to summarize the antiretroviral therapies/compounds and their associated drawbacks since the discovery of azidothymidine. Additionally, we aim to provide an updated analysis of the most recent discoveries of promising antiretroviral candidates, along with an exploration of the current limitations within antiretroviral research. Finally, we intend to glean insightful perspectives and propose future research directions in this crucial area of study.
Bats are flying mammals with unique immune systems that allow them to hold many pathogens. Hence, they are recognised as the reservoir of many zoonotic pathogens. In this study, we performed molecular detection to detect coronaviruses, paramyxoviruses, pteropine orthoreoviruses and dengue viruses from samples collected from insectivorous bats in Krau Reserve Forest. One faecal sample from Rhinolophus spp. was detected positive for coronavirus. Based on BLASTN, phylogenetic analysis and pairwise alignment-based sequence identity calculation, the detected bat coronavirus is most likely to be a bat betacoronavirus lineage slightly different from coronavirus from China, Philippines, Thailand and Luxembourg. In summary, continuous surveillance of bat virome should be encouraged, as Krau Reserve Forest reported a wide spectrum of biodiversity of insectivorous and fruit bats. Moreover, the usage of primers for the broad detection of viruses should be reconsidered because geographical variations might possibly affect the sensitivity of primers in a molecular approach.
Pteropine orthoreovirus (PRV) causes respiratory tract infections in humans. Despite its emergence as a zoonotic and respiratory virus, little is known about its cell tropism, which hampers progress in fully understanding its pathogenesis in humans. Hek293 cells are most susceptible to PRV infection, while HeLa cells are the least. Human cytokeratin 1 (CK1) was identified as the protein that interacts with PRV. The immunofluorescence assay and qPCR results revealed prior treatment with anti-CK1 may provide Hek293 cells protection against PRV. The KRT1-knockout Hek293 cells were less susceptible to PRV infection. Further study into the pathogenesis of PRV in humans is needed.