AIM/OBJECTIVES: To explore how curricula contribute to health graduate capabilities and what factors contribute to the development of these capabilities.
METHODS: Using contribution analysis evaluation, a six-step iterative process, key stakeholders in the six selected courses were engaged in an iterative theory-driven evaluation. The researchers collectively developed a postulated theory-of-change. Then evidence from existing relevant documents were extracted using documentary analysis. Collated findings were presented to academic staff, industry representatives and graduates, where additional data was sought through focus group discussions - one for each discipline. The focus group data were used to validate the theory-of-change. Data analysis was conducted iteratively, refining the theory of change from one course to the next.
RESULTS: The complexity in teaching and learning, contributed by human, organizational and curriculum factors was highlighted. Advances in knowledge, skills, attitudes and graduate capabilities are non-linear and integrated into curriculum. Work integrated learning significantly contributes to knowledge consolidation and forming professional identities for health professional courses. Workplace culture and educators' passion impact on the quality of teaching and learning yet are rarely considered as evidence of impact.
DISCUSSION: Capturing the episodic and contextual learning moments is important to describe success and for reflection for improvement. Evidence of impact of elements of courses on future graduate capabilities was limited with the focus of evaluation data on satisfaction.
CONCLUSION: Contribution analysis has been a useful evaluation method to explore the complexity of the factors in learning and teaching that influence graduate capabilities in health-related courses.
METHODS: We conducted a cross-sectional, observational, retrospective study across 6 continents, 70 countries, and 457 stroke centers. Diagnoses were identified by their ICD-10 codes or classifications in stroke databases.
RESULTS: There were 91,373 stroke admissions in the 4 months immediately before compared to 80,894 admissions during the pandemic months, representing an 11.5% (95% confidence interval [CI] -11.7 to -11.3, p < 0.0001) decline. There were 13,334 IVT therapies in the 4 months preceding compared to 11,570 procedures during the pandemic, representing a 13.2% (95% CI -13.8 to -12.7, p < 0.0001) drop. Interfacility IVT transfers decreased from 1,337 to 1,178, or an 11.9% decrease (95% CI -13.7 to -10.3, p = 0.001). Recovery of stroke hospitalization volume (9.5%, 95% CI 9.2-9.8, p < 0.0001) was noted over the 2 later (May, June) vs the 2 earlier (March, April) pandemic months. There was a 1.48% stroke rate across 119,967 COVID-19 hospitalizations. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was noted in 3.3% (1,722/52,026) of all stroke admissions.
CONCLUSIONS: The COVID-19 pandemic was associated with a global decline in the volume of stroke hospitalizations, IVT, and interfacility IVT transfers. Primary stroke centers and centers with higher COVID-19 inpatient volumes experienced steeper declines. Recovery of stroke hospitalization was noted in the later pandemic months.