Displaying all 2 publications

Abstract:
Sort:
  1. Goh HH, Sloan J, Malinowski R, Fleming A
    J Plant Physiol, 2014 Feb 15;171(3-4):329-39.
    PMID: 24144490 DOI: 10.1016/j.jplph.2013.09.009
    Expansins have long been implicated in the control of cell wall extensibility. However, despite ample evidence supporting a role for these proteins in the endogenous mechanism of plant growth, there are also examples in the literature where the outcome of altered expansin gene expression is difficult to reconcile with a simplistic causal linkage to growth promotion. To investigate this problem, we report on the analysis of transgenic Arabidopsis plants in which a heterologous cucumber expansin can be inducibly overexpressed. Our results indicate that the effects of expansin expression on growth depend on the degree of induction of expansin expression and the developmental pattern of organ growth. They support the role of expansin in directional cell expansion. They are also consistent with the idea that excess expansin might itself impede normal activities of cell wall modifications, culminating in both growth promotion and repression depending on the degree of expression.
  2. Xiao Y, Sloan J, Hepworth C, Fradera-Soler M, Mathers A, Thorley R, et al.
    New Phytol, 2023 Jan;237(2):441-453.
    PMID: 36271620 DOI: 10.1111/nph.18564
    Leaf structure plays an important role in photosynthesis. However, the causal relationship and the quantitative importance of any single structural parameter to the overall photosynthetic performance of a leaf remains open to debate. In this paper, we report on a mechanistic model, eLeaf, which successfully captures rice leaf photosynthetic performance under varying environmental conditions of light and CO2 . We developed a 3D reaction-diffusion model for leaf photosynthesis parameterised using a range of imaging data and biochemical measurements from plants grown under ambient and elevated CO2 and then interrogated the model to quantify the importance of these elements. The model successfully captured leaf-level photosynthetic performance in rice. Photosynthetic metabolism underpinned the majority of the increased carbon assimilation rate observed under elevated CO2 levels, with a range of structural elements making positive and negative contributions. Mesophyll porosity could be varied without any major outcome on photosynthetic performance, providing a theoretical underpinning for experimental data. eLeaf allows quantitative analysis of the influence of morphological and biochemical properties on leaf photosynthesis. The analysis highlights a degree of leaf structural plasticity with respect to photosynthesis of significance in the context of attempts to improve crop photosynthesis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links