Displaying all 2 publications

Abstract:
Sort:
  1. Shaw G, Atkinson B, Meredith W, Snape C, Steven M, Hoch A, et al.
    J Environ Radioact, 2014 Jul;133:18-23.
    PMID: 23958331 DOI: 10.1016/j.jenvrad.2013.07.006
    Following gas generation in a Geological Disposal Facility (GDF), (14)C-containing gases could migrate through the geosphere, eventually diffusing into soils at the Earth's surface. This paper reports summary results from laboratory and field experiments to obtain information on the probable rates of a) diffusive transport and b) oxidation of (12/13)CH(4) (as a surrogate for (14)CH4) in a typical agricultural soil in the UK. Rates of CH(4) oxidation were generally low in the field and undisturbed soil columns, though a re-packed column of homogenised topsoil oxidised ambient atmospheric CH(4) 20× faster than an undisturbed soil column. In contrast to low observed rates of CH(4) oxidation, the effective diffusion of CH(4) through the soil was rapid. Isotopically labelled CH(4) injected at a depth of 45 cm in the field diffused to the surface and exited the soil over a time period ranging from 8 to 24 h. The rate of CH(4) diffusion through the soil was increased by the presence of ryegrass roots which increased soil porosity and decreased water content. δ(13)C values for laboratory column soils after labelled CH(4) injection experiments showed no sign of residual (13)C, despite the extremely high δ(13)C values of the injected (12/13)CH(4). If laboratory observations are confirmed by measurements in field samples it can be concluded that the majority of (14)CH(4) from a GDF which enters a soil with low methanotrophic activity will be lost to the free atmosphere after diffusing rapidly through the soil column.
  2. Yew M, Ren Y, Koh KS, Sun C, Snape C
    Glob Chall, 2019 Jan;3(1):1800060.
    PMID: 31565355 DOI: 10.1002/gch2.201800060
    Microfluidic systems have advanced beyond natural and life science applications and lab-on-a-chip uses. A growing trend of employing microfluidic technologies for environmental detection has emerged thanks to the precision, time-effectiveness, and cost-effectiveness of advanced microfluidic systems. This paper reviews state-of-the-art microfluidic technologies for environmental applications, such as on-site environmental monitoring and detection. Microdevices are extensively used in collecting environmental samples as a means to facilitate detection and quantification of targeted components with minimal quantities of samples. Likewise, microfluidic-inspired approaches for separation and treatment of contaminated water and air, such as the removal of heavy metals and waterborne pathogens from wastewater and carbon capture are also investigated.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links