Research and development of nanocellulose and nanocellulose-reinforced composite materials have garnered substantial interest in recent years. This is greatly attributed to its unique functionalities and properties, such as being renewable, sustainable, possessing high mechanical strengths, having low weight and cost. This review aims to highlight recent developments in incorporating nanocellulose into rubber matrices as a reinforcing filler material. It encompasses an introduction to natural and synthetic rubbers as a commodity at large and conventional fillers used today in rubber processing, such as carbon black and silica. Subsequently, different types of nanocellulose would be addressed, including its common sources, dimensions, and mechanical properties, followed by recent isolation techniques of nanocellulose from its resource and application in rubber reinforcement. The review also gathers recent studies and qualitative findings on the incorporation of a myriad of nanocellulose variants into various types of rubber matrices with the main goal of enhancing its mechanical integrity and potentially phasing out conventional rubber fillers. The mechanism of reinforcement and mechanical behaviors of these nanocomposites are highlighted. This article concludes with potential industrial applications of nanocellulose-reinforced rubber composites and the way forward with this technology.
The development of hybrid polysaccharide-protein complexes as Pickering emulsion stabilizers has attracted increasing research interest in recent years. This work presents an eco-friendly surface modification strategy to functionalize hydrophilic cellulose nanocrystals (CNC) using hydrophobic soy protein isolate (SPI) via mussel adhesive-inspired poly (l-dopa) (PLD) to develop improved nanoconjugates as stabilizers for oil-in-water Pickering emulsion. The physicochemical properties of the CNC-PLD-SPI nanoconjugate were evaluated by solid-state 13C NMR, FT-IR, TGA, XRD, contact angle analysis, and TEM. The modified CNC (conjugation content of 38.22 ± 1.21%) had lowered crystallinity index, higher thermal stability, and more hydrophobic than unmodified CNC, with an average particle size of 309.9 ± 8.0 nm. Use of amphiphilic CNC-PLD-SPI nanoconjugate with greater conformational flexibility as Pickering stabilizer produced oil-in-water emulsions with greater physical stability.
Rising world population is expected to increase the demand for nitrogen fertilizers to improve crop yield and ensure food security. With existing challenges on low nutrient use efficiency (NUE) of urea and its environmental concerns, controlled release fertilizers (CRFs) have become a potential solution by formulating them to synchronize nutrient release according to the requirement of plants. However, the most significant challenge that persists is the "tailing" effect, which reduces the economic benefits in terms of maximum fertilizer utilization. High materials cost is also a significant obstacle restraining the widespread application of CRF in agriculture. The first part of this review covers issues related to the application of conventional fertilizer and CRFs in general. In the subsequent sections, different raw materials utilized to form CRFs, focusing on inorganic and organic materials and synthetic and natural polymers alongside their physical and chemical preparation methods, are compared. Important factors affecting rate of release, mechanism of release and mathematical modelling approaches to predict nutrient release are also discussed. This review aims to provide a better overview of the developments regarding CRFs in the past ten years, and trends are identified and analyzed to provide an insight for future works in the field of agriculture.