Displaying all 2 publications

Abstract:
Sort:
  1. Coombs CM, Shields RY, Hunt EA, Lum YW, Sosnay PR, Perretta JS, et al.
    Acad Med, 2017 04;92(4):494-500.
    PMID: 27680320 DOI: 10.1097/ACM.0000000000001387
    PROBLEM: Because reported use of simulation in preclinical basic science courses is limited, the authors describe the design, implementation, and preliminary evaluation of a simulation-based clinical correlation curriculum in an anatomy course for first-year medical students at Perdana University Graduate School of Medicine (in collaboration with Johns Hopkins University School of Medicine).

    APPROACH: The simulation curriculum, with five weekly modules, was a component of a noncadaveric human anatomy course for three classes (n = 81 students) from September 2011 to November 2013. The modules were designed around major anatomical regions (thorax; abdomen and pelvis; lower extremities and back; upper extremities; and head and neck) and used various types of simulation (standardized patients, high-fidelity simulators, and task trainers). Several methods were used to evaluate the curriculum's efficacy, including comparing pre- versus posttest scores and comparing posttest scores against the score on 15 clinical correlation final exam questions.

    OUTCOMES: A total of 81 students (response rate: 100%) completed all pre- and posttests and consented to participate. Posttest scores suggest significant knowledge acquisition and better consistency of performance after participation in the curriculum. The comparison of performance on the posttests and final exam suggests that using simulation as an adjunctive pedagogy can lead to excellent short-term knowledge retention.

    NEXT STEPS: Simulation-based medical education may prove useful in preclinical basic science curricula. Next steps should be to validate the use of this approach, demonstrate cost-efficacy or the "return on investment" for educational and institutional leadership, and examine longer-term knowledge retention.

  2. Sosnay PR, Siklosi KR, Van Goor F, Kaniecki K, Yu H, Sharma N, et al.
    Nat Genet, 2013 Oct;45(10):1160-7.
    PMID: 23974870 DOI: 10.1038/ng.2745
    Allelic heterogeneity in disease-causing genes presents a substantial challenge to the translation of genomic variation into clinical practice. Few of the almost 2,000 variants in the cystic fibrosis transmembrane conductance regulator gene CFTR have empirical evidence that they cause cystic fibrosis. To address this gap, we collected both genotype and phenotype data for 39,696 individuals with cystic fibrosis in registries and clinics in North America and Europe. In these individuals, 159 CFTR variants had an allele frequency of ł0.01%. These variants were evaluated for both clinical severity and functional consequence, with 127 (80%) meeting both clinical and functional criteria consistent with disease. Assessment of disease penetrance in 2,188 fathers of individuals with cystic fibrosis enabled assignment of 12 of the remaining 32 variants as neutral, whereas the other 20 variants remained of indeterminate effect. This study illustrates that sourcing data directly from well-phenotyped subjects can address the gap in our ability to interpret clinically relevant genomic variation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links