Displaying all 2 publications

Abstract:
Sort:
  1. Byrnes G, Lim NT, Spence AJ
    Proc Biol Sci, 2008 May 7;275(1638):1007-13.
    PMID: 18252673 DOI: 10.1098/rspb.2007.1684
    Arboreal animals negotiate a highly three-dimensional world that is discontinuous on many spatial scales. As the scale of substrate discontinuity increases, many arboreal animals rely on leaping or gliding locomotion between distant supports. In order to successfully move through their habitat, gliding animals must actively modulate both propulsive and aerodynamic forces. Here we examined the take-off and landing kinetics of a free-ranging gliding mammal, the Malayan colugo (Galeopterus variegatus) using a custom-designed three-dimensional accelerometry system. We found that colugos increase the propulsive impulse to affect longer glides. However, we also found that landing forces are negatively associated with glide distance. Landing forces decrease rapidly as glide distance increases from the shortest glides, then level off, suggesting that the ability to reorient the aerodynamic forces prior to landing is an important mechanism to reduce velocity and thus landing forces. This ability to substantially alter the aerodynamic forces acting on the patagial wing in order to reorient the body is a key to the transition between leaping and gliding and allows gliding mammals to travel long distances between trees with reduced risk of injury. Longer glides may increase the access to distributed resources and reduce the exposure to predators in the canopy or on the forest floor.
  2. Byrnes G, Libby T, Lim NT, Spence AJ
    J Exp Biol, 2011 Aug 15;214(Pt 16):2690-6.
    PMID: 21795564 DOI: 10.1242/jeb.052993
    Gliding is thought to be an economical form of locomotion. However, few data on the climbing and gliding of free-ranging gliding mammals are available. This study employed an animal-borne three-dimensional acceleration data-logging system to collect continuous data on the climbing and gliding of free-ranging Malayan colugos, Galeopterus variegatus. We combined these movement data with empirical estimates of the metabolic costs to move horizontally or vertically to test this long-standing hypothesis by determining whether the metabolic cost to climb to sufficient height to glide a given distance was less than the cost to move an equivalent distance horizontally through the canopy. On average, colugos climb a short distance to initiate glides. However, due to the high energetic cost of climbing, gliding is more energetically costly to move a given horizontal distance than would be predicted for an animal travelling the same distance through the canopy. Furthermore, because colugos spend a small fraction of their time engaged in locomotor activity, the high costs have little effect on their overall energy budget. As a result, the energetic economy hypothesis for the origins of gliding is not supported. It is likely that other ecologically relevant factors have played a greater role in the origins of gliding in colugos and other mammals.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links