Lambs with the Major Histocompatibility Complex DRB1*1101 allele have been shown to produce fewer nematode eggs following natural and deliberate infection. These sheep also possess fewer adult Teladorsagia circumcincta than sheep with alternative alleles at the DRB1 locus. However, it is unclear if this allele is responsible for the reduced egg counts or merely acts as a marker for a linked gene. This study defined the MHC haplotypes in a population of naturally infected Scottish Blackface sheep by PCR amplification and sequencing, and examined the associations between MHC haplotypes and faecal egg counts by generalised linear mixed modelling. The DRB1*1101 allele occurred predominately on one haplotype and a comparison of haplotypes indicated that the causal mutation or mutations occurred in or around this locus. Additional comparisons with another resistant haplotype indicated that mutations in or around the DQB2*GU191460 allele were also responsible for resistance to nematode infections. Further analyses identified six amino acid substitutions in the antigen binding site of DRB1*1101 that were significantly associated with reductions in the numbers of adult T. circumcincta.
Understanding the structure of the major histocompatibility complex, especially the number and frequency of alleles, loci and haplotypes, is crucial for efficient investigation of the way in which the MHC influences susceptibility to disease. Nematode infection is one of the most important diseases suffered by sheep, and the class II region has been repeatedly associated with differences in susceptibility and resistance to infection. Texel sheep are widely used in many different countries and are relatively resistant to infection. This study determined the number and frequency of MHC class II genes in a small flock of Texel sheep. There were 18 alleles at DRB1, 9 alleles at DQA1, 13 alleles at DQB1, 8 alleles at DQA2 and 16 alleles at DQB2. Several haplotypes had no detectable gene products at DQA1, DQB1 or DQB2, and these were defined as null alleles. Despite the large numbers of alleles, there were only 21 distinct haplotypes in the population. The relatively small number of observed haplotypes will simplify finding disease associations because common haplotypes provide more statistical power but complicate the discrimination of causative mutations from linked marker loci.