Displaying 1 publication

Abstract:
Sort:
  1. Li AN, Sun JH, Saidin S, Cheah JS, Kuo CH, Li L, et al.
    Int J Nanomedicine, 2024;19:13149-13163.
    PMID: 39660280 DOI: 10.2147/IJN.S470225
    INTRODUCTION: Skin is the first-line barrier defense against infection, irradiation, and toxins, but is prone to natural aging (intrinsic aging) and environmental factors (extrinsic aging). Hence, there is an increasing urgency to explore an effective treatment for aging skin. This study was focused on testing the potential of utilizing adipocyte stem cell derived exosomal as nanomedicine to regenerate the dermal layer and counteract signs of skin aging.

    METHODS: The harvested stem cells from adipose tissues were isolated, cultured, and then starved. The centrifugation of cell cultures medium yielded the human adipose-derived stem cells conditional medium (HADSCs-CM). Collagen secretion and fibroblast viability of human fibroblasts (Hs68) were measured in the presence of HADSCs-CM. The dermal layer, vascular endothelial growth factor (VEGF), and collagen levels were evaluated on the mice animal models between the treatments with and without HADSCs-CM.

    RESULTS: Western blotting, transmission electron microscopy (TEM), and dynamic light scattering (DLS) confirmed that the functional particles in HADSCs-CM were exosomes. When Hs68 fibroblasts were treated with HADSCs-CM, both cell viability and collagen secretion increased in a dose-dependent manner. Following the post-ultraviolet A (post-UVA) exposure, the mice exposed to the HADSCs-CM have decreased dermal thickness and VEGF expression and increased collagen volume compared to the non-HADSCs-CM exposed mice (control group).

    CONCLUSION: HADSCs-CM significantly alleviated signs of skin senescence, including reduced dermal thickness, decreased VEGF expression, and enhanced collagen production. Exosomes, identified in the HADSCs-CM, are the functional component of these regenerative effects. This study highlights that the exosomal nanomedicine found in HADSCs-CM could regenerate skin, boost collagen production, improve fibroblast cell viability, and contain functional exosomes.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links