Hyperbranched polysaccharides (HBPSs) are the main components in cell wall and exopolysaccharide (EPS) of Pleurotus tuber-regium. To enhance the yield of these macromolecules, corn oil at 4% addition exhibited the best effect for production of mycelial biomass at 20.49 g/L and EPS at 0.59 g/L, which was 2.56 folds and 1.90 folds of the control, respectively. The treated hyphae were much thicker with smooth surface, while its cell wall content (43.81 ± 0.02%) was 1.96 times of the control (22.34 ± 0.01%). Moreover, a large number of lipid droplets could be visualized under the view of confocal laser scanning microscopy (CLSM). RNA-seq analysis revealed that corn oil could enter the cells and result in the up-regulation of genes on cell morphology and membrane permeability, as well as the down-regulation on expression level of polysaccharide hydrolase and genes involved in the MAPK pathway, all of which probably contribute to the increase of polysaccharides production.
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.