Vitamin D plays a role in regulating the immune system and can be linked to the alteration of the gut microbiome, which leads to several immunological diseases. This systematic review aims to explore the relationship between Vitamin D and children's gut microbiome, as well as its impact towards the immune system. We have systematically collated relevant studies from different databases concerning changes in the gut microbiome of children from infants to 18 years old associated with Vitamin D and the immunological pathways. The studies utilized 16S rRNA sequencing analysis of fecal matter with or without Vitamin D supplementation and Vitamin D levels. Ten studies were selected for the review, among which eight studies showed significant alterations in the gut microbiome related to Vitamin D supplementation or Vitamin D levels. The taxa of the phylum Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria are the most altered in these studies. The alteration of the taxa alters the Th1 and Th2 pathways and changes the immune response. We will discuss how Vitamin D may contribute to the activation of immune pathways via its effects on intestinal barrier function, microbiome composition, and/or direct effects on immune responses. In conclusion, the studies examined in this review have provided evidence that Vitamin D levels may have an impact on the composition of children's gut microbiomes.
The aim of this study is two-fold: first, to correlate the values for each of the trabecular bone microstructure (TBM) parameters to the individual’s chronological age and sex, thereby facilitating the assessment of potential age and sex-related changes in trabecular bone microstructure parameters in the mandible; and second, to quantify the trabecular microstructural parameters in relation to chronological age. Twenty cone-beam computed tomographic (CBCT) scans were retrieved retrospectively from a database of adult patients with ages ranging in age from 22 to 43 years. In the mandible, the volume of interest included the inter-dental space between the second mandibular premolar and the first mandibular molar, as well as the trabecular space beneath and between the apices. Using the AnalyzeDirect 14.0 software, the DICOM images of CBCT scans were pre-processed, transformed, segmented using a novel semi-automatic threshold-guided method, and quantified. In addition, TBM parameters were derived, and statistical analysis was conducted using a Pearson correlation test with two tails. All parameters exhibited no statistically significant differences (p > 0.05) between chronological age and sex. Statistically significant negative correlations were found between Tb. N (r = −0.489), BS/TV (r = −0.527), and chronological age (p = 0.029 and p = 0.017, respectively). Only Tb. N and BS/TV exhibited an inverse relationship with chronological age. Numerous studies have quantified the trabecular architecture of the jaw bones, but none have found a correlation between the quantified trabecular parameters and chronological age. The digital imprints produced by radiographic imaging can serve as biological profiles for data collection.