Flavonoids represent a major group of polyphenolic compounds. Their capacity to inhibit tumor proliferation, cell cycle, angiogenesis, migration and invasion is substantially responsible for their chemotherapeutic activity against lung cancer. However, their clinical application is limited due to poor aqueous solubility, low permeability and quick blood clearance, which leads to their low bioavailability. Nanoengineered systems such as liposomes, nanoparticles, micelles, dendrimers and nanotubes can considerably enhance the targeted action of the flavonoids with improved efficacy and pharmacokinetic properties, and flavonoids can be successfully translated from bench to bedside through various nanoengineering approaches. This review addresses the therapeutic potential of various flavonoids and highlights the cutting-edge progress in the nanoengineered systems that incorporate flavonoids for treating lung cancer.
Lung cancer is the second leading cause of cancer-related mortality globally, and non-small-cell lung cancer accounts for most lung cancer cases. Nanotechnology-based drug-delivery systems have exhibited immense potential in lung cancer therapy due to their fascinating physicochemical characteristics, in vivo stability, bioavailability, prolonged and targeted delivery, gastrointestinal absorption and therapeutic efficiency of their numerous chemotherapeutic agents. However, traditional chemotherapeutics have systemic toxicity issues; therefore, dietary polyphenols might potentially replace them in lung cancer treatment. Polyphenol-based targeted nanotherapeutics have demonstrated interaction with a multitude of protein targets and cellular signaling pathways that affect major cellular processes. This review summarizes the various molecular mechanisms and targeted therapeutic potentials of nanoengineered dietary polyphenols in the effective management of lung cancer.